Skip to main content
Log in

The Effect of Short-Term Drying on Biofilm Formed in a Model Water Distribution System

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

In this study the effect of short-term drying on biofilm-related bacteria was investigated. Biofilm formation was encouraged to develop for nine months in a model water-distribution system. Biofilms were analyzed monthly for enumeration of aerobic and anaerobic heterotrophic bacteria, and sulphate reducing bacteria (SRB) after 6, 24, 48, and 72 hours of exposure to drying. The numbers of live and dead bacteria were directly analyzed by epifluorescence microscopy. In addition, extracellular polysaccharide substances (EPS) extraction, carbohydrate analysis, and scanning electron microscope (SEM) observation were performed. The formation of a brown-colored, thin biofilm layer was observed on the inner surface of polypropylene pipes at the end of the experimental study. SEM micrographs showed that ruptures occurred in the biofilm layer due to effects of drying. The counts of aerobic heterotrophic bacteria and SRB in dried biofilm samples decreased significantly after 6 and 48 hours, respectively. According to 5-cyano-2,3-ditolyl-tetrazolium chloride (CTC) staining results, bacteria can remain viable for up to 72 hours after exposure to drying. The significant increase in the amount of carbohydrate after 48 hours of exposure to drying indicates that bacteria produce EPS as a protective mechanism against drying stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Alkan, U., Teksoy, A., and Acar, Ö., Detection of the factors effecting bacterial regrowth in drinking water network, İTÜ dergisi, 2005, vol. 15, pp. 43–55.

  2. Allison, D.G., The biyofilm matrix, Biofouling, 2003, vol. 19, pp. 139–150.

    Article  CAS  PubMed  Google Scholar 

  3. Amel, B.K.N., Amine, B., and Amina, B., Survival of Vibrio fluvialis in seawater under starvation conditions, Microbiol. Res., 2008, vol. 163, pp. 323–328.

    Article  CAS  PubMed  Google Scholar 

  4. Armon, R., Starosvetzky, J., Arbel, T., and Green, M., Survival of Legionella pneumophila and Salmonella typhimurium in biofilm systems, Water Sci. Technol., 1997, vol. 35, pp. 293–300.

    Article  CAS  Google Scholar 

  5. Assere, A., Oulahal, N., and Carpentier, B., Comparative evaluation of methods for counting surviving biofilm cells adhering to a polyvinyl chloride surface exposed to chlorine or drying, J. Appl. Microbiol., 2008, vol. 104, pp. 1–11.

    Article  Google Scholar 

  6. Baş, D. and Türetgen, I., The effect of short time drying and temperature change on microbial biofilm formation in a model pipe rig feed with distributed network water, Türk Mikrobiyol. Cem. Derg., 2011, vol. 41, pp. 155–161.

    Google Scholar 

  7. Batte, M., Appenzeller, B.M.R., Grandjean, D., Fass, S., Gauthier, V., Jorand, F., Mathieu, L., Boualam, M., Saby, S., and Block, J.C., Biofilms in drinking water distribution systems, Rev. Environ. Sci. Biotechnol., 2003, vol. 2, pp. 147–168.

    Article  CAS  Google Scholar 

  8. Billi, D. and Potts, M., Life and death of dried prokaryotes, Res. Microbiol., 2001, vol. 153, pp. 7–12.

    Article  Google Scholar 

  9. Burke, V., Robinson, J., Gracey, M., Petersen, D., and Partridge, K., Isolation of Aeromonas hydrophila from a metropolitan water supply: seasonal correlation with clinical isolates, Appl. Environ. Microbiol., 1984, vol. 48, pp. 361–366.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Campanac, C., Pineau, L., Payard, A., Baziard-Mouysset, G., and Roques, C., Interactions between biocide cationic agents and bacterial biofilms, Antimicrob. Agents Chemother., 2002, vol. 46, pp. 1469–1474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cochran, W.G., Estimation of bacterial densities by means of the “most probable number”, Biometrics, 1950, vol. 6, pp. 105–116.

    Article  CAS  PubMed  Google Scholar 

  12. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., and Smith, F., Colorimetric method for determination of sugars and related substances, Anal. Chem., 1956, vol. 28, pp. 350–356.

    Article  CAS  Google Scholar 

  13. Ekinci, Ö., Konak, H., and Öztürk, E. A minimum head loss optimization strategy for water distribution networks, Jeodezi, Jeinformasyon ve Arazi Yönetimi Dergisi, 2005, vol. 92, pp. 44–54.

    Google Scholar 

  14. Gagnon, G.A. and Slawson, R.M., An efficient biofilm removal method for bacterial cells exposed to drinking water, J. Microbiol. Methods, 1999, vol. 34, pp. 203–214.

    Article  Google Scholar 

  15. Ilhan-Sungur, E. and Çotuk, A., Microbial corrosion of galvanized steel in a simulated recirculating cooling tower system, Corros. Sci., 2010, vol. 52, pp. 161–171.

    Article  CAS  Google Scholar 

  16. Kooij, D.V.D., Lieverloo, J.H.M., Schellart, J., and Hiemstra, P., Maintaining quality without a disinfectant residual, Maintaining Disinfection, 1999, vol. 91, pp. 55–64.

    Google Scholar 

  17. Lee, W. and Characklis, W.G., Corrosion of mild steel under anaerobic biofilm, Corros. Sci., 1993, vol. 49, pp. 186–199.

    Article  CAS  Google Scholar 

  18. Momba, M.N.B., Kfir, R., Venter, S.N., and Cloete, T.E., An overview of biofilm formation in distribution systems and its impact on the deterioration of water quality, Water SA, 2000, vol. 26, pp. 59–66.

    Google Scholar 

  19. Panoff, J.M., Thammavongs, B., Guéguen, M., and Boutibonnes, P., Cold stress responses in mesophilic bacteria, Cryobiol., 1998, vol. 36, pp. 75–83.

    Article  CAS  Google Scholar 

  20. Peng, J.S., Tsai, W.C., and Chou, C.C. Inactivation and removal of Bacillus cereus by sanitizer and detergent, Int. J. Food Microbiol., 2002, vol. 77, pp. 11–18.

    Article  CAS  PubMed  Google Scholar 

  21. Postgate, J.R. The Sulphate-reducing Bacteria, Cambridge: Cambridge Univ. Press, 1984, 2nd ed.

  22. Potts, M., Desiccation tolerance: a simple process?, Trends Microbiol., 2001, vol. 9, pp. 553–559.

    Article  CAS  PubMed  Google Scholar 

  23. Reasoner, D.J. and Geldrich, E.E. A new medium for the enumeration and subculture of bacteria from potable water, Appl. Environ. Microbiol., 1985, vol. 49, pp. 1–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rodriguez, G.G., Phipps, D., Ishiguro, K., and Ridgway, H.F., Use of a fluorescent redox probe for direct visualization of actively respiring bacteria, Appl. Environ. Microbiol., 1992, vol. 58, pp. 1801–1808.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Signoretto, C., Lleò, M., Tafi, M.C., and Canepari, P., Cell wall chemical composition of Enterococcus faecalis in the viable but nonculturable state, Appl. Environ. Microbiol., 2000, vol. 66, pp. 1953–1959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sutherland, I.W., Biosynthesis and composition of gram-negative bacterial extracellular and wall polysaccharides, Annu. Rev. Microbiol., 1985, vol. 39, pp. 243–270.

    Article  CAS  PubMed  Google Scholar 

  27. Tuovinen, O.H. and Hsu, J.C., Aerobic and anaerobic microorganisms in tubercles of the Columbus, Ohio, water distribution system, Appl. Environ. Microbiol., 1982, vol. 44, pp. 761–764.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Türetgen, I., Ilhan-Sungur, E., and Çotuk, A., Effects of short-time drying on biofilm-associated bacteria, Ann. Microbiol., 2007, vol. 57, pp. 277–280.

    Article  Google Scholar 

  29. Veenendaal, H.R. and Kooij, D., Biofilm Formation Potential of Pipe Materials in Plumbing Systems, Kiwa NV Res. Consult., The Netherlands, Min. Public Hous. Urban Plan. Environ., 1999.

    Google Scholar 

  30. Zhang, X., Bishop, P.L., and Kinkle, B.K., Comparison of extraction methods for quantifying extracellular polymers in biofilms, Water Sci. Technol., 1999, vol. 39, pp. 211–218.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The model system was donated by Dizayn Teknik Plastic Pipes and Fittings Co. This work was supported by Scientific Research Project Coordination Unit of Istanbul University. Project numbers: FDP-2018-28949 and 2803.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ilhan-Sungur.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Üstüntürk-Onan, M., Hoca, S. & Ilhan-Sungur, E. The Effect of Short-Term Drying on Biofilm Formed in a Model Water Distribution System. Microbiology 87, 857–864 (2018). https://doi.org/10.1134/S0026261718060188

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261718060188

Keywords:

Navigation