Skip to main content

Advertisement

Log in

Characterization of Carbohydrate-Containing Components of Azospirillum brasilense Sp245 Biofilms

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The structure and functions of the biopolymers of the matrix of Azospirillum brasilense biofilms formed at the liquid–solid interface were studied. Calcofluor-binding polysaccharides (CBPS) and the complexes containing lipopolysaccharides (LPS) and proteinaceous structures were shown to fix mature biofilms on solid surfaces and to perform a framework function. The matrix of mature biofilms contained a carbohydrate hapten with a specific affinity to wheat germ agglutinin (WGA), which is important for associative interaction and plant root colonization. The carbohydrate components, predominating over the proteinaceous matrix components, mediate preferable biofilm attachment to hydrophilic surfaces, which is especially evident in the case of A. brasilense Sp245 mutants with impaired flagella formation. This is the first report on the presence of amyloid structures in the biomass of Azospirillum biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

REFERENCES

  1. Altabe, S.G., de Iannino, N.I., de Mendoza, D., and Ugalde, R.A., New osmoregulated β-(1‒3), β-(1‒6) glucosyltransferase(s) in Azospirillum brasilense, J. Bacteriol., 1994, vol. 176, pp. 4890–4898.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Baldani, V.L.D., Baldani, J.I., and Döbereiner, J., Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat, Can. J. Microbiol., 1983, vol. 29, pp. 924–929.

    Article  Google Scholar 

  3. Bogino, P.C., Oliva, M.M., Sorroche, F.G., and Giordano, W., The role of bacterial biofilms and surface components in plant-bacterial associations, Int. J. Mol. Sci., 2013, vol. 14, pp. 15838–15859.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Del Gallo, M. and Haegi, A., Characterization and quantification of exocellular polysaccharides in Azospirillum brasilense and Azospirillum lipoferum, Symbiosis, 1990, vol. 9, pp. 155–161.

    CAS  Google Scholar 

  5. Döbereiner, J. and Day, J.M., Associative symbiosis in tropical grass: Characterization of microorganisms and dinitrogen fixing sites, in Symposium on Nitrogen Fixation, Newton, W.E. and Nijmans, C.J., Eds., Pullman: Washington State Univ. Press, 1976, pp. 518–538.

  6. Dykman, L.A. and Bogatyrev, V.A., Gold nanoparticles: preparation, functionalization and applications in biochemistry and immunochemistry, Russ. Chem. Rev., 2007, vol. 76, no. 2, pp. 181–205.

    Article  CAS  Google Scholar 

  7. Fedonenko, Yu.P., Zatonsky, G.V., Konnova, S.A., Zdorovenko, E.L., and Ignatov, V.V., Structure of the O-specific polysaccharide of the lipopolysaccharide of Azospirillum brasilense Sp245, Carbohydr. Res., 2002, vol. 337, pp. 869–872.

    Article  PubMed  CAS  Google Scholar 

  8. Fibach-Paldi, S., Burdman, S., and Okon, Y., Key physiological properties contributing to rhizosphere adaptation and plant growth promoting abilities of Azospirillum brasilense, FEMS Microbiol. Lett., 2012, vol. 326, pp. 99–108.

    Article  PubMed  CAS  Google Scholar 

  9. Flemming, H.-C. and Wingender, J., The biofilm matrix, Nat. Rev. Microbiol., 2010, vol. 8, pp. 623–633.

    Article  PubMed  CAS  Google Scholar 

  10. Fowler, D.M., Koulov, A.V., Balch, W.E., and Kelly, J.W., Functional amyloid–from bacteria to humans, Trends Biochem. Sci., 2007, vol. 32, no. 5, pp. 217–224.

    Article  PubMed  CAS  Google Scholar 

  11. Jeter, C. and Matthysse, A.G., Characterization of the binding of diarrheagenic strains of E. coli to plant surfaces and the role of curli in the interaction of the bacteria with alfalfa sprouts, Mol. Plant Microbe Interact., 2005, vol. 18, pp. 1235–1242.

    Article  PubMed  CAS  Google Scholar 

  12. Kamnev, A.A., Infrared spectroscopy in studying biofunctionalised gold nanoparticles, in Nanomaterials Imaging Techniques, Surface Studies, and Applications, Fesenko, O., Yatsenko, L., and Brodin, M., Eds., New York: Springer, 2013, pp. 35–50.

    Google Scholar 

  13. Kamnev, A.A., Tugarova, A.V., Antonyuk, L.P., Tarantilis, P.A., Polissiou, M.G., and Gardiner, P.H.Y., Effects of heavy metals on plant-associated rhizobacteria: Comparison of endophytic and non-endophytic strains of Azospirillum brasilense, J. Trace Elem. Med. Biol., 2005, vol. 19, pp. 91–95.

    Article  PubMed  CAS  Google Scholar 

  14. Kovtunov, E.A., Petrova, L.P., Shelud’ko, A.V., and Katsy, E. I., Transposon insertion into a chromosomal copy of flhB gene is concurrent with defects in the formation of polar and lateral flagella in the bacterium Azospirillum brasilense Sp245, Russ. J. Genet., 2013a, vol. 49, pp. 881–884.

    Article  CAS  Google Scholar 

  15. Kovtunov, E.A., Shelud’ko, A.V., Chernyshova, M.P., Petrova, L.P., and Katsy, E.I., Mutants of bacterium Azospirillum brasilense Sp245 with Omegon insertion in mmsB or fabG genes of lipid metabolism are defective in motility and flagellation, Russ. J. Genet., 2013b, vol. 49, pp. 1107–1111.

    Article  CAS  Google Scholar 

  16. Lotan, R. and Sharon, N., The fluorescence of wheat germ agglutinin and of its complexes with saccharides, Biochem. Biophys. Res. Commun., 1973, vol. 55, pp. 1340–1346.

    Article  PubMed  CAS  Google Scholar 

  17. Matora, L.Yu. and Shchegolev, S.Yu., Antigenic identity of the capsule lipopolysaccharides, exopolysaccharides, and O-specific polysaccharides in Azospirillum brasilense, Microbiology (Moscow), 2002, vol. 71, pp. 178–181.

    Article  CAS  Google Scholar 

  18. Matora, L.Yu., Shvartsburd, B.I., and Shchegolev, S.Yu., Immunochemical analysis of O-specific polysaccharides from the soil nitrogen-fixing bacteria Azospirillum brasilense, Microbiology (Moscow) 1998, vol. 67, pp. 677–681.

    CAS  Google Scholar 

  19. Nilsson, M.R., Techniques to study amyloid fibril formation in vitro, Methods, 2004, vol. 34, pp. 151–160.

    Article  PubMed  CAS  Google Scholar 

  20. O’Toole, G.A. and Kolter, R., Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis, Mol. Microbiol., 1998, vol. 28, pp. 449–461.

    Article  PubMed  Google Scholar 

  21. Plakunov, V.K., Mart’yanov, S.V., Teteneva, N.A., and Zhurina, M.V., Controlling of microbial biofilms formation: Anti- and probiofilm agents, Microbiology (Moscow), 2017, vol. 86, pp. 423–428.

    Article  CAS  Google Scholar 

  22. Plasek, J. and Hoskova, B., Solvatochromic effect in the optical spectra of calcofluor and its relation to fluorescent staining of yeast cell walls, J. Fluoresc., 2010, vol. 20, pp. 343–352.

    Article  PubMed  CAS  Google Scholar 

  23. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: a Laboratory Manual, 2nd ed., Cold Spring Harbor: Cold Spring Harbor Lab. Press, 1989.

    Google Scholar 

  24. Shelud’ko, A.V., Filip’echeva, Y.A., Shumilova, E.M., Khlebtsov, B.N., Burov, A.M., Petrova, L.P., and Katsy, E.I., Changes in biofilm formation in the nonflagellated flhB1 mutant of Azospirillum brasilense Sp245, Microbiology (Moscow), 2015, vol. 84, pp. 144–151.

    Article  CAS  Google Scholar 

  25. Sheludko, A.V., Kulibyakina, O.V., Shirokov, A.A., Petrova, L.P., Matora, L.Yu., and Katsy, E.I., The effect of mutations affecting synthesis of lipopolysaccharides and calcofluor-binding polysaccharides on biofilm formation by Azospirillum brasilense, Microbiology (Moscow), 2008, vol. 77, pp. 313–317.

    Article  CAS  Google Scholar 

  26. Shumilova, E.M., Shelud’ko, A.V., Filip’echeva, Y.A., Evstigneeva, S.S., Ponomareva, E.G., Petrova, L.P., and Katsy, E.I., Changes in cell surface properties and biofilm formation efficiency in Azospirillum brasilense Sp245 mutants in the putative genes of lipid metabolism mmsB1 and fabG1, Microbiology (Moscow), 2016, vol. 85, pp. 172–179.

    Article  CAS  Google Scholar 

  27. Skvortsov, I.M. and Ignatov, V.V., Extracellular polysaccharides and polysaccharide-containing biopolymers from Azospirillum species: properties and the possible interaction with plant roots, FEMS Microbiol. Lett., 1998, vol. 165, pp. 223–229.

    Article  PubMed  CAS  Google Scholar 

  28. Tugarova, A.V., Shelud’ko, A.V., Dyatlova, Yu.A., Filip’echeva, Yu.A., and Kamnev, A.A., FTIR spectroscopic study of biofilms formed by the rhizobacterium Azospirillum brasilense Sp245 and its mutant Azospirillum brasilense Sp245.1610, J. Mol. Struct., 2017, vol. 1140, pp. 142–147.

    Article  CAS  Google Scholar 

  29. Wang, D., Xu, A., Elmerich, C., and Ma, L.Z., Biofilm formation enables free-living nitrogen-fixing rhizobacteria to fix nitrogen under aerobic conditions, ISME J., 2017, vol. 11, pp. 1602–1613.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Wood, P.J., Specificity in the interaction of direct dyes with polysaccharides, Carbohydr. Res., 1980, vol. 85, pp. 271–287.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.A. Bogatyrev for kindly providing colloidal gold and to B.N. Khlebtsov for his help in fluorescence spectroscopic measurements.The work was partially supported by the Russian Foundation for Basic Research, projects nos. 16-04-01444 and 17-08-01696.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shelud’ko.

Additional information

Translated by P. Sigalevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shelud’ko, A.V., Filip’echeva, Y.A., Telesheva, E.M. et al. Characterization of Carbohydrate-Containing Components of Azospirillum brasilense Sp245 Biofilms. Microbiology 87, 610–620 (2018). https://doi.org/10.1134/S0026261718050156

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261718050156

Keywords: