, Volume 87, Issue 5, pp 681–691 | Cite as

Structure of Microbial Mats in the Mramornaya Bay (Crimea) Coastal Areas

  • N. V. Pimenov
  • A. Yu. Merkel
  • I. Yu. Tarnovetskii
  • T. V. Malakhova
  • O. S. Samylina
  • T. A. Kanapatskii
  • E. N. Tikhonova
  • M. A. Vlasova


The structure of microbial mats from the Mramornaya Bay (Crimea) was investigated. Light microscopy in combination with transmission and scanning electron microscopy revealed the base of bacterial mats to be interwoven thin filaments (100 to 500 nm in diameter) consisting mainly of sulfur. Numerous bean-shaped single microbial cells (~1.6 × 0.7 µm), some of which were attached to sulfur filaments, were also revealed. High-throughput sequencing of the 16S rRNA genes revealed predominance of bacteria of the genera Arcobacter (27%), Alcaligenes (17%), and Desulfuromonas (8.5%) as well as of uncultured members of the family Lachnospiraceae (4.9%). No clearly predominant microbial taxa were revealed in the detritus sample below the mats. Similar to the bacterial mat, bacteria of the genera Arcobacter and Desulfuromonas were predominant in the detritus, but their relative abundance was significantly lower (4.1 and 6%, respectively). Analysis of the 16S rRNA gene sequences specific for the genus Arcobacter revealed considerable phylogenetic diversity of this group in the samples from both the upper bacterial mats and the detritus sediment. Most of obtained sequences formed common clusters with the sequences of various uncultured members of the genus Arcobacter, while an insignificant share of them was related to the recently described sulfide-oxidizing bacterium “Candidatus Arcobacter sulfidicus.” Thus, members of the phylogenetically heterogeneous group of epsilonproteobacteria of the genus Arcobacter were the dominant component of the Mramornaya Bay microbial communities.


microbial mats sulfur filaments sulfur-oxidizing microorganisms Arcobacter 16S rRNA gene high-throughput sequencing 



The work was supported by the Russian Foundation for Basic Research, project no. 17-04-00023, and Government Assignment no. 0104-2018-0030; the analysis of high-throughput sequencing data was supported by the Russian Science Foundation, Grant no. 17-74-30025.


  1. 1.
    Akagawa, M. and Yamasato, K., Synonymy of Alcaligenes aquamarinus, Alcaligenes faecalis subsp. homari, and Deleya aesta: Deleya aquamarina comb. nov. as the type species of the genus Deleya, Int. J. Syst. Evol. Microbiol., 1989, vol. 39, pp. 462–466.Google Scholar
  2. 2.
    Anisimova, M. and Gascuel, O., Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative, Syst. Biol., 2006, vol. 55, pp. 539–552.CrossRefPubMedGoogle Scholar
  3. 3.
    Bienhold, C., Zinger, L., Boetius, A., and Ramette, A., Diversity and biogeography of bathyal and abyssal seafloor bacteria, PLoS One, 2016, vol. 11, no. 1, pp. e0148016.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bowman, J.P., McCammon, S.A., and Dann, A.L., Biogeographic and quantitative analyses of abundant uncultivated gamma-proteobacterial clades from marine sediment, Microb. Ecol., 2005, vol. 49, pp. 451–460.CrossRefPubMedGoogle Scholar
  5. 5.
    Bryukhanov, A.L., Vlasova, M.A., Malakhova, T.V., Perevalova, A.A., and Pimenov, N.V., Phylogenetic diversity of the sulfur cycle bacteria in the bottom sediments of the Chersonesus Bay, Microbiology (Moscow), vol. 87, no. 3, pp. 372–381.Google Scholar
  6. 6.
    Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., et al., QIIME allows analysis of high-throughput community sequencing data, Nat. Methods, 2010, vol. 7, pp. 335–336.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chao, A., Nonparametric estimation of the number of classes in a population, Scand. J. Statistics, 1984, vol. 11, pp. 265–270.Google Scholar
  8. 8.
    Dyksma, S., Bischof, K., Fuchs, B.M., Hoffmann, K., Meier, D., Meyerdierks, A., Pjevac, P., Probandt, D., Richter, M., Stepanauskas, R., and Mußmann, M., Ubiquitous gammaproteobacteria dominate dark carbon fixation in coastal sediments, ISME J., 2016, vol. 10, pp. 1939–1953.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Edgar, R.C., Search and clustering orders of magnitude faster than BLAST, Bioinformatics, 2010, vol. 26, pp. 2460–2461.CrossRefPubMedGoogle Scholar
  10. 10.
    Egorov, V.N., Pimenov, N.V., Malakhova, T.V., Kanapatskii, T.A., Artemov, Yu.G., and Malakhova, L.V., Biogeochemical characteristics of methane distribution in the water and bottom sediments at gas seep jets in the Sevastopol Bay area, Morsk. Ekol. Zh., 2012, vol. 11, no. 3, pp. 41–52.Google Scholar
  11. 11.
    Fadrosh, D.W., Ma, B., Gajer, P., Sengamalay, N., Ott, S., Brotman, R.M., and Ravel, J., An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform, Microbiome, 2014, vol. 2, no. 1, pp. 6.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fossing, H., Gallardo, V.A., Jørgensen, B.B., Hüttel, M., Nielsen, L.P., Schulz, H., Canfield, D.E., Forster, S., Glud, R.N., Gundersen, J.K., Küver, J., Ramsing, N.B., Teske, A., Thamdrup, B., and Ulloa, O., Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca, Nature, 2002, vol. 374, pp. 713–715.CrossRefGoogle Scholar
  13. 13.
    Ghai, R., Mizuno, C.M., Picazo, A., Camacho, A., and Rodriguez-Valera, F., Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria, Sci. Rep., 2013, vol. 3, pp. 2471.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Grünke, S., Felden, J., Lichtschlag, A., Girnth, A.-C., De Beer, D., Wenzhofer, F., and Boetius, A., Niche differentiation among mat-forming, sulfide-oxidizing bacteria at cold seeps of the Nile Deep Sea Fan (Eastern Mediterranean Sea), Geobiology, 2011, vol. 9, pp. 330–348.CrossRefPubMedGoogle Scholar
  15. 15.
    Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O., New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0, Syst. Biol., 2010, vol. 59, pp. 307–321.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ivanov, M.V. and Lein, A.Yu., Fractionation of stable isotopes of carbon and sulfur during biological processes in the Black Sea, in Past and Present Water Column Anoxia, Neretin, L.N., Ed., Berlin: Springer, 2006, pp. 373–417.Google Scholar
  17. 17.
    Ivanov, V.E., Lomakin, I.E., Topolyuk, A.S., Efremtseva, L.L., and Boldyrev S.N., Patterns of tectonics of the Southwestern Crimea, Geol. Polez. Isko., Mir. Okeana, 2009, no. 4, pp. 27–39.Google Scholar
  18. 18.
    Jessen, G.L., Lichtschlag, A., Struck, U., and Boetius, A., Distribution and composition of thiotrophic mats in the hypoxic zone of the Black Sea (150–170 m water depth, Crimea margin), Front. Microbiol., 2016, vol. 7, pp. 1011–1024.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Jørgensen B.B., Mineralization of organic matter in the sea bed–the role of sulfate reduction, Nature, 1982, vol. 296, pp. 643–645.CrossRefGoogle Scholar
  20. 20.
    Jørgensen, B.B., Fossing, H., Wirsen, C.O., and Jannasch, H.W., Sulfide oxidation in the anoxic Black Sea chemocline, Deep-Sea Res., 1991, vol. 38, pp. 1083S–1103S.CrossRefGoogle Scholar
  21. 21.
    Kuever, J., Rainey, F.A., and Widdel, F., Desulfuromonas, in Bergey’s Manual of Systematics of Archaea and Bacteria, Wiley, 2015, pp. 1–7.Google Scholar
  22. 22.
    Lein, A., Pimenov, N., Guillou, C., Martin, J.-M., Lancelot, C., Rusanov, I., Yusupov, S., Miller, Yu., and Ivanov, M., Seasonal dynamics of the sulphate reduction rate on the north-western Black Sea shelf, Estuarine Coastal Shelf Sci., 2002, vol. 54, pp. 385–401.CrossRefGoogle Scholar
  23. 23.
    Lein, A.Yu., Egorov, V.N., Pimenov, N.V., Gulin, M.B., Lyut, K., Lyut, U., Artemov, Yu.G., Polikarpov, G.G., Til’, Kh, and Ivanov, M.V., Sulfide structures from the Black Sea bottom, Doklady Akad. Nauk, 1995, vol. 340, no. 5, pp. 676–680.Google Scholar
  24. 24.
    Lever, M.A., Torti, A., Eickenbusch, P., Michaud, A.B., Šantl-Temkiv, T., and Jørgensen, B.B., A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types, Front. Microbiol., 2015, vol. 6, p. 476.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lloyd, K.G., Albert, D.B., Biddle, J.F., Chanton, J.P., Pizarro, O., and Teske, A., Spatial structure and activity of sedimentary microbial communities underlying a Beggiatoa spp. mat in a Gulf of Mexico hydrocarbon seep, PLoS One, 2010, vol. 5, no. 1, pp. e8738. doi 10.1371/journal.pone.0008738CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Malakhova, T.V., Egorov, V.N., Malakhova, L.V., Artemov, Y.G., Evtushenko, D.B., Gulin, S.B., Kanapatskii, T.A., and Pimenov, N.V., Microbial processes and genesis of methane gas jets in the coastal areas of the Crimean Peninsula, Microbiology (Moscow), 2015, vol. 84, no.6, pp. 838–845.CrossRefGoogle Scholar
  27. 27.
    McKay, L.J., MacGregor, B.J., Biddle, J.F., Albert, D.B., Mendlovitz, H.P., Hoer, D.R., Lipp, J.S., Lloyd, K.G., and Teske, A.P., Spatial heterogeneity and underlying geochemistry of phylogenetically diverse orange and white Beggiatoa mats in Guaymas Basin hydrothermal sediments, Deep Sea Res., 2012, vol. 67, pp. 21–31.CrossRefGoogle Scholar
  28. 28.
    Merkel, A.Y., Pimenov, N.V., Rusanov, I.I., Slobodkin, A.I., Slobodkina, G.B., Tarnovetckii, I.Y., Frolov, E.N., Dubin, A.V., Perevalova, A.A., and Bonch-Osmolovskaya, E.A., Microbial diversity and autotrophic activity in Kamchatka hot springs, Extremophiles, 2017, vol. 21, pp. 307–317.CrossRefPubMedGoogle Scholar
  29. 29.
    Michaelis, W., Seifert, R., and Nauhaus, K., Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane, Science, 2002, vol. 297, pp. 1013–1015.CrossRefPubMedGoogle Scholar
  30. 30.
    Mußmann, M., Pjevac, P., Krüger, K., and Dyksma, S., Genomic repertoire of the Woeseiaceae/JTB255, cosmopolitan and abundant core members of microbial communities in marine sediments, ISME J., 2017, vol. 11, pp. 1276–1281.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Niemann, H., Lösekann, T., Beer, D.D., Elvert, M., Nadalig, T., Knittel, K., Amann, R., Sauter, E.J., Schlüter, M., Klages, M., Foucher, J.P., and Boetius, A., Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink, Nature, 2006, vol. 443, pp. 854–858.CrossRefPubMedGoogle Scholar
  32. 32.
    Omoregie, E.A., Mastalerz, V., de Lange, G., Straub, K.L., Kappler, A., Røy, H., Stadnitskaia, A., Foucher, J.-P., and Boetius, A., Biogeochemistry and community composition of iron- and sulfur-precipitating microbial mats at the Chefren Mud Volcano (Nile Deep Sea Fan, Eastern Mediterranean), Appl. Environ. Microbiol., 2008, vol. 74, pp. 3198–3215.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Pimenov, N.V., Rusanov, I.I., Poglazova, M.N., Mityushina, L.L., Sorokin, D.Yu., Khmelenina, V.N., and Trotsenko, Yu.A., Bacterial mats on coral-like structures at methane seeps in the Black Sea, Microbiology (Moscow), 1997, vol. 66, no. 3, pp. 354–360.Google Scholar
  34. 34.
    Pimenov, N.V., Savvichev, A.S., Rusanov, I.I., Ivanov, M.V., and Lein, A.Yu., Microbiological processes of the carbon and sulfur cycles at cold methane seeps of the North Atlantic, Microbiology (Moscow), 2000, vol. 69, no. 6, pp. 709–720.CrossRefGoogle Scholar
  35. 35.
    Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F.O., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucleic Acids Res., 2013. Database issue, pp. D590–D596.Google Scholar
  36. 36.
    Reeburgh, W.S., Bess, B.W., Whalen, S.C., Sandbeck, K.A., and Kilpatrick, K.A., Black Sea methane geochemistry, Deep-Sea Res., 1991, vol. 38, pp. S1189–S1210.CrossRefGoogle Scholar
  37. 37.
    Roalkvam, I., Jørgensen, S.L., Chen, Y., Stokke, R., Dahle, H., Hocking, W.P., Lanzén, A., Haflidason, H., and Steen, I.H., New insight into stratification of anaerobic methanotrophs in cold seep sediments, FEMS Microbiol. Ecol., 2011, vol. 78, pp. 233–243.CrossRefPubMedGoogle Scholar
  38. 38.
    Savvichev, A.S., Kadnikov, V.V., Kravchishina, M.D., Galkin, S.A., Novigatskii, A.N, Sigalevich, P.A., Merkel, A.Yu., Ravin, N.V., Pimenov, N.V., and Flint, M.V., Methane as an organic matter source and the trophic basis of a Laptev Sea cold seep microbial community, Geomicrobiol. J., 2018, vol. 35, no. 5, pp. 411–423.CrossRefGoogle Scholar
  39. 39.
    Schloss, P.D. and Handelsman, J., Toward a census of bacteria in soil, PLoS Comput. Biol., 2006, vol. 2, p. e92.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Schulz, H.N., Brinkhoff, T., Ferdelman, T.G., Mariné, M.H., Teske, A., and Jorgensen, B.B., Dense populations of a giant sulfur bacterium in Namibian shelf sediments, Science, 1999, vol. 284, pp. 493–495.CrossRefPubMedGoogle Scholar
  41. 41.
    Sievert, S.M., Wieringa, E.B.A., Wirsen, C.O., and Taylor, C.D., Growth and mechanism of filamentous-sulfur formation by Candidatus Arcobacter sulfidicus in opposing oxygen-sulfide gradients, Environ. Microbiol., 2007, vol. 9, pp. 271–276.CrossRefPubMedGoogle Scholar
  42. 42.
    Sorokin, Yu.I., The Black Sea, in Ecosystems of the World: Estuaries and Enclosed Seas, Ketchum, B.H., Ed., Amsterdam: Elsevier, 1983, pp. 253–292.Google Scholar
  43. 43.
    Taylor, C.D., Wirsen, C.O., and Gaill, F., Rapid microbial production of filamentous sulfur mats at hydrothermal vents, Appl. Environ. Microbiol. 1999, vol. 65, pp. 2253–2255.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Treude, T., Orphan, V., Knittel, K., Gieseke, A., House, C.H., and Boetius, A., Consumption of methane and CO2 by Methanotrophic microbial mats from gas seeps of the anoxic Black Sea, Appl. Environ. Microbiol., 2007, vol. 73, pp. 2271–2283.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wirsen, C.O., Sievert, S.M., Cavanaugh, C.M., Molyneaux, S.J., Ahmad, A., Taylor, L.T., DeLong, E.F., and Taylor, C.D., Characterization of an autotrophic sulfide-oxidizing marine Arcobacter sp. that produces filamentous sulfur, Appl. Environ. Microbiol., 2002, vol. 68, pp. 316–325.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. V. Pimenov
    • 1
  • A. Yu. Merkel
    • 1
  • I. Yu. Tarnovetskii
    • 2
  • T. V. Malakhova
    • 3
  • O. S. Samylina
    • 1
  • T. A. Kanapatskii
    • 1
  • E. N. Tikhonova
    • 1
  • M. A. Vlasova
    • 1
  1. 1.Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of SciencesMoscowRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Kovalevsky Institute of Marine Biological Research of RASSevastopolRussia

Personalised recommendations