Skip to main content
Log in

Enhancement of Activity of Carbohydrases with Endo-depolymerase Action in Trichoderma reesei Using Mutagenesis

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

In order to obtain feed enzyme preparations with increased activity of endo-carbohydrases of depolymerase action, mutagenesis of the Trichoderma reesei strain was carried out using ultraviolet and ionizing irradiation. Application of fractionated UV-irradiation made it possible to increase the endoglucanase activity by 20% and xylanase activity by 80% compared to the original strain. The greatest effect was achieved after multistage gamma-irradiation mutagenesis with a cobalt source. When the mutant T. reesei-Co-44 was cultured in shaking flasks, its endoglucanase activity was increased 5-fold, while xylanase activity increased more than 8-fold compared to the original strain. High activity of the target enzymes in the mutant strains was confirmed by the results of fed-batch cultivation in laboratory reactors with lactose feeding as a carbon source and an inducer of cellulases and xylanases biosynthesis. The maximum activity of endoglucanase and xylanase was achieved by culturing strain T. reesei-Co-44 obtained as a result of gamma-irradiation mutagenesis and amounted to 1324.2 ± 70.1 and 3394 ± 164 U/mL, respectively. This activity level makes it possible to produce competitive enzyme preparations of carbohydrases for fodder production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Adav, S.S., Chao, L.T., and Sze, S.K., Quantitative secretomic analysis of Trichoderma reesei strains reveals enzymatic composition for lignocellulosic biomass degradation, Mol. Cell. Proteomics, 2012, vol. 11, no. 7. M111.012419. doi 10.1074/mcp.M111.012419

  2. Ali, N., Athar, M., Khan, Y., Idrees, M., and Ahmad, D., Regulation and improvement of cellulase production: Recent advances, Natural Res., 2014, vol. 5, pp. 857–863. doi 10.4236/nr.2014.514073

    Article  Google Scholar 

  3. Amore, A., Giacobbe, S., and Faraco, V., Regulation of cellulase and hemicellulase gene expression in fungi, Curr. Genom., 2013, vol. 14, pp. 230–249. doi 10.2174/ 1389202911314040002

    Article  CAS  Google Scholar 

  4. Bedford, M.R. and Partridge, G.G., Enzymes In Farm Animal Nutrition, CAB Int., 2010.

    Book  Google Scholar 

  5. Bedford, M.R., Exogenous enzymes in monogastric nutrition–their current value and future benefits, Animal Feed Sci. Technol., 2000, vol. 86, pp. 1–13.

    Article  CAS  Google Scholar 

  6. Darabzadeh, N., Hamidi-Esfahani, Z., and Hejazi, P., Improvement of cellulase production and its characteristics by inducing mutation on Trichoderma reesei 2414 under solid state fermentation on rice by-products, Appl. Food Biotechnol., 2018, vol. 5, pp. 11–18.

    Google Scholar 

  7. Du, W., Sun, C., Liang, J., Han, Y., Yu, J., and Liang, Z., Improvement of laccase production and its characterization by mutagenesis, J. Food Biochem., 2015, vol. 39, pp. 101–108. doi 10.1111/jfbc.12111

    Article  CAS  Google Scholar 

  8. Gusakov, A.V., Alternatives to Trichoderma reesei in biofuel production, Trends Biotechnol., 2011, vol. 29, pp. 419–425.

    Article  PubMed  CAS  Google Scholar 

  9. Hassan, L., Reppke, M.J., Thieme, N., Schweizer, S.A., Mueller, C.W., and Benz, J.P., Comparing the physiochemical parameters of three celluloses reveals new insights into substrate suitability for fungal enzyme production, Fungal Biol. Biotechnol., 2017, vol. 4, no. 10. doi 10.1186/s40694-017-0039-9

  10. Herpoël-Gimbert, I., Margeot, A., Dolla, A., Jan, G., Mollé, D., Lignon, S., Mathis, H., Sigoillot, J.-C., Monot, F., and Asther, M., Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains, Biotechnol. Biofuels, 2008, vol. 1:18. doi 10.1186/1754-6834-1-1

    Article  PubMed  PubMed Central  Google Scholar 

  11. Khattak, F.M., Pasha, T.N., Hayat, Z., and Mahmud, A., Enzymes in poultry nutrition, J. Anim. Pl. Sci., 2006, vol. 16, no. 1–2, pp. 1–7.

    Google Scholar 

  12. Kostyleva, E.V., Sereda, A.S., Velikoretskaya, I.A., Burtseva, E.I., Veselkina, T.N., Nefedova, L.I., Sharikov, A.Y., Tsurikova, N.V., Lobanov, N.S., and Sinitsyn, A.P., Development of schemes of induced mutagenesis for improving the productivity of Aspergillus strains producing amylolytic enzymes, Microbiology (Moscow). 2017, vol. 86, no. 4, pp. 493–502.

    Article  CAS  Google Scholar 

  13. Miettinen-Oinonen, Arja. Trichoderma reesei Strains for Production of Cellulases for the Textile Industry, Espoo: VTT Publications, vol. 550, 2004.

  14. Oliveira, M.M.Q., Grigorevski-Lima, A.L., Franco-Cirigliano, M.N., Nascimento, R.P., Bon, E.P.S., and Coelho, R.R.R., Trichoderma atroviride 102C1 mutant: A high endoxylanase producer for assisting lignocellulosic material degradation, J. Microb. Biochem. Technol., 2014, vol. 6, pp. 236–241. doi 10.4172/1948-5948.1000150

    Article  Google Scholar 

  15. Ottenheim, C., Werner, K.A., Zimmermann, W., and Wu, J.C., Improved endoxylanase production and colony morphology of Aspergillus niger DSM 26641 by γ-ray induced mutagenesis, Biochem. Engin. J., 2015, vol. 94, pp. 9–14.

    Article  CAS  Google Scholar 

  16. Pathak, S.S., Sandhu, S.S., and Rajak, R.C., Mutation studies on fungal glucoamylase: a review, Int. J. Pharm. Biol. Sci., 2015, vol. 5, no. 2, pp. 297–308.

    CAS  Google Scholar 

  17. Peterson, R. and Nevalainen, H., Trichoderma reesei RUT-C30– thirty years of strain improvement, Microbiology (UK). 2012, vol. 158, pp. 58–68. doi 10.1099/ mic.0.054031-0

    Article  PubMed  CAS  Google Scholar 

  18. Polizeli, M.L., Rizzatti, A.C., Monti, R., Terenzi, H.F., Jorge, J.A., and Amorim, D.S., Xylanases from fungi: properties and industrial applications, Appl. Microbiol. Biotechnol., 2005, vol. 67, pp. 577–591.

    Article  PubMed  CAS  Google Scholar 

  19. Portnoy, T., Margeot, A., Seidl-Seiboth, V., Le Crom, S., Chaabanee, F.B., Seiboth, B., and Kubicek, C.P., Differential regulation of the cellulase transcription factors XYR1, ACE2, and ACE1 in Trichoderma reesei strains producing high and low levels of cellulose, Eukar. Cell, 2011, vol. 10, pp. 262–271.

    Article  CAS  Google Scholar 

  20. Rastogi, R.P., Richa, Kumar, A., Tyagi, M.B., and Sinha R.P., Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair, J. Nucl. Acids, 2010, vol. 2010. doi 10.4061/2010/592980

  21. Sajith, S., Priji, P., Sreedevi, S., and Benjamin, S., An overview on fungal cellulases with an industrial perspective, J. Nutr. Food Sci., 2016, vol. 6:461. doi 10.4172/2155-9600.1000461

    Google Scholar 

  22. Seidl, V. and Seiboth, B., Trichoderma reesei: genetic approaches to improving strain efficiency, Biofuels, 2010, vol. 1. I. 2, pp. 343–354. doi 10.4155/bfs.10.1

  23. Shafique, S., Bajwa, R., and Shafique, S., Molecular characterisation of UV and chemically induced mutants of Trichoderma reesei FCBP-364, Nat. Prod. Res., 2010, vol. 24. I. 15, pp. 14381448. doi 10.1080/ 14786410903132399

  24. Sinitsyn, A.P., Gusakov, A.V., and Chernoglazov, V.A., Biokonversiya lignocellyuloznykh materialov (Bioconversion of Lignocellulose Materials), Moscow: Mos. Gox. Univ., 1995.

    Google Scholar 

  25. Sinitsyn, A.P., Sinitsyna, O.A., and Korotkova, O.G., Enzymatic news, Agrobiznes, 2016, vol. 38, no. 4, pp. 88–92.

    Google Scholar 

  26. Vardhan, P.V. and Shukla, L.I., Gamma irradiation of medicinally important plants and the enhancement of secondary metabolite production, Int. J. Radiat. Biol., 2017, vol. 93. I. 9, pp. 967–979. doi 10.1080/ 09553002.2017.1344788

  27. Walia, A., Guleria, S., Mehta, P., Chauhan, A., and Parkash, J., Microbial xylanases and their industrial application in pulp and paper biobleaching: a review, 3 Biotech., 2017, vol. 7:11. doi 10.1007/s13205-016-0584-6

  28. Wang, S.B., Ivanova, Ch., and Seidl-Seiboth, V., Trichoderma reesei: A fungal enzyme producer for cellulosic biofuels, in Biofuel Production–Recent Developments and Prospects, Dos Santos Bernardes, M.A., Ed., InTech, 2011, vol. 13, pp. 309–340.

    Google Scholar 

  29. Wang, S., Liu, G., Wang, J., Yu, J., Huang, B., and Xing, M., Enhancing cellulase production in Trichoderma reesei RUT C30 through combined manipulation of activating and repressing genes, J. Ind. Microbiol. Biotechnol., 2013, vol. 40. I. 6, pp. 633–641. doi 10.1007/s10295-013-1253-y

Download references

ACKNOWLEDGMENTS

This work was financially supported by a grant of the Basic Research Program of the Russian Academies of Sciences for 2013–2020 (project no. 0529-2016-0045); experiments were performed using the facilities of the Shared-Access Center “Industrial Biotechnologies” of the Research Center of Biotechnology, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Kostyleva.

Additional information

Translated by D. Timchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostyleva, E.V., Tsurikova, N.V., Sereda, A. et al. Enhancement of Activity of Carbohydrases with Endo-depolymerase Action in Trichoderma reesei Using Mutagenesis. Microbiology 87, 652–661 (2018). https://doi.org/10.1134/S0026261718050120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261718050120

Keywords:

Navigation