, Volume 87, Issue 4, pp 559–568 | Cite as

Structure of Microbial Communities of the Sediments of Alkaline Transbaikalia Lakes with Different Salinity

  • S. V. ZaitsevaEmail author
  • E. Yu. Abidueva
  • A. A. Radnagurueva
  • S. M. Bazarov
  • S. P. Buryukhaev
Experimental Articles


The goal of the work was to reveal the differences in the structure of microbial communities of Transbaikalia alkaline lakes stemming from the differences in their salinity and hydrochemical parameters. The lakes studied were Verkhnee Beloe (Buryat Republic, Russia), as well as Khilganta, Gorbunka, and Borzinskoe (Transbaikal krai, Russia) with salinity from 12.3 to 430 g/L, which differed in the mineral composition of the sediments and hydrochemical parameters. Lake sediments were found to contain 47 prokaryotic phyla (42 bacterial and 5 archaeal ones). The phyla Proteobacteria, Euryarchaeota, Bacteroides, Chloroflexi, Actinobacteria, and Firmicutes were predominant, comprising over 95% of the classified sequences. Comparative abundance of archaea increased with salinity from below 1% in Lake Verkhnee Beloe to 35% in Lake Borzinskoe. The most numerous bacterial OTUs belonged to gammaproteobacteria of the genus Halomonas (up to 15% of the number of classified sequences). The most numerous archaeal OTUs were identified at the genus level as members of the genera Halorubrum and Halohasta belonging to the family Halorubraceae, which comprises extremely halophilic Euryarchaeota.


microbial diversity saline lakes high-throughput sequencing 16S rRNA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn, A.-C., Meier-Kolthof, J.P., Overmars, L., Richter, M., Woyke, T., Sorokin, D.Y., and Muyzer, J., Genomic diversity within the haloalkaliphilic genus Thioalkalivibrio, PLoS One, 2017, vol. 12, no. 3. e0173517.Google Scholar
  2. Baatar, B., Chiang, P.-W., Rogozin, D.Y., Wu, Y.-T., Tseng, C.-H., Yang, C.-Y., Chiu, H.-H., Oyuntsetseg, B., Degermendzhy, A.G., and Tang, S.-L., Bacterial communities of three saline meromictic lakes in Central Asia, PLoS One, 2016, vol. 11. e0150847.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Fadrosh, D.W., Ma, B., Gajer, P., Sengamalay, N., Ott, S., Brotman, R.M., and Ravel, J., An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform, Microbiome, 2014, vol. 2, p. 6.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Fernandez, A.B., Rasuk, M.C., Visscher, P.T., Contreras, M., Novoa, F., Poire, D.G., Patterson, M.M., Ventosa, A., and Farias, M.E., Microbial diversity in sediment ecosystems (vaporates domes, microbial mats, and crusts) of hypersaline Laguna Tebenquiche, Salar de Atacama, Chile, Front. Microbiol., 2016, vol. 7, p. 1284.Google Scholar
  5. Foti, M., Ma, S., Sorokin, D.Y., Rademaker, J.L.W., Kuenen, J.G., and Muyzer, G., Genetic diversity and biogeography of haloalkaliphilic sulphur-oxidizing bacteria belonging to the genus Thioalkalivibrio, FEMS Microbiol. Ecol., 2006, vol. 56, pp. 95–101.CrossRefPubMedGoogle Scholar
  6. Foti, M., Sorokin, D.Y., Lomans, B., Mussman, M., Zakharova, E.E., Pimenov, N.V., Kuenen, J.G., and Muyzer, G., Diversity, activity and abundance of sulfatereducing bacteria in saline and hypersaline soda lakes, Appl. Environ. Microbiol., 2007, vol. 73, pp. 2093–2100.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Gorlenko, V.M., Namsaraev, B.B., Kulyrova, A.V., Zavarzina, D.G., and Zhilina, T.N., The activity of sulfatereducing bacteria in bottom sediments of soda lakes of the Southeastern Transbaikal region, Microbiology (Moscow), 1999, vol. 68, pp. 580–585.Google Scholar
  8. Groth, D., Hartmann, S., Klie, S., and Selbig, J., Principal components analysis, computational toxicology, in Methods in Molecular Biology (Methods and Protocols), Reisfeld, B. and Mayeno, A., Eds., Totowa, NJ: Humana Press, 2013.Google Scholar
  9. Kevbrin, V.V., Lysenko, A.M., and Zhilina, T.N., Physiology of alkaliphilic methanogen Z-7936, a new strain of Methanosalsus zhilinae isolated from Lake Magadi, Microbiology (Moscow), 1997, vol. 66, pp. 261–266.Google Scholar
  10. Kozyreva, L., Egorova, D., Anan’ina, L., Plotnikova, E., Ariskina, E., Prisyazhnaya, N., Radnaeva, L., and Namsaraev, B., Belliella buryatensis sp. nov., isolated from the Lake Solenoe (Buryatia, Russia), Int. J. Syst. Evol. Microbiol., 2016, vol. 66, pp. 137–143.CrossRefPubMedGoogle Scholar
  11. Kozyreva, L.P., Egorova, D.V., Anan’ina, L.N., Plotnikova, E.A., and Namsaraev, B.B., Microbial diversity of cellulolytic community of the sandy mat from lake Zun-Torey (southern Transbaikalia), Inland Water Biol., 2014, vol. 7, pp. 134–140.CrossRefGoogle Scholar
  12. La Cono, V., Smedile, F., Bortoluzzi, G., Arcadi, E., Maimone, G., Messina, E., Borghini, M., Oliveri, E., Mazzola, S., L’Haridon, S., Toffin, L., Genovese, L., Ferrer, M., Giuliano, L., Golyshin, P.N., and Yakimov, M.M., Unveiling microbial life in new deep-sea hypersaline Lake Thetis. Part I: Prokaryotes and environmental settings, Environ. Microbiol., 2011, vol. 13, pp. 2250–2268.Google Scholar
  13. Lever, M.A., Torti, A., Eickenbusch, P., Michaud, A.B., Šantl-Temkiv, T., and Jørgensen, B.B., A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types, Front. Microbiol., 2015, vol. 6, p. 476.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Merkel, A.Yu., Pimenov, N.V., Rusanov, I.I., Slobodkin, A.I., Slobodkina, G.B., Tarnovetckii, I.Yu., Frolov, E. N., Dubin, A.V., Perevalova, A.A., and Bonch-Osmolovskaya, E.A., Microbial diversity and autotrophic activity in Kamchatka hot springs, Extremophiles, 2017, vol. 21, pp. 307–317.CrossRefPubMedGoogle Scholar
  15. Mesbah, N.M., Abou-El-Ela, S.H., and Wiegel, J., Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An Natrun, Egypt, PLoS One, 2013, vol. 8, no. 8. e72577.CrossRefGoogle Scholar
  16. Namsaraev, B.B., Gorlenko, V.M., Namsaraev, Z.B., Dagurova, O.P., Barkhutova, D.D., Buryukhaev, S.P., and Khakhinov, V.V., Polevoi praktikum po vodnoi mikrobiologii i gidrokhimii (Field Practical Course in Aquatic Microbiology and Hydrochemistry), Ulan-Ude: Buryat. Gis. Univ., 2005.Google Scholar
  17. Namsaraev, Z.B., Zaitseva, S.V., Gorlenko, V.M., Kozyreva, L.P., and Namsaraev, B.B., Microbial processes and factors controlling their activities in alkaline lakes of the Mongolian plateau, Chin. J. Oceanol. Limnol., 2015, vol. 33, pp. 1391–1401.CrossRefGoogle Scholar
  18. Nolla-Ardevol, V., Strous, M., and Tegetmeyer, H.E., Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome, and metatranscriptome, Front. Microbiol., 2015, vol. 6, p. 597.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F.O., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucl. Acids Res., 2013, vol. 41, pp. D590–D596.CrossRefPubMedGoogle Scholar
  20. Simachew, A., Lanzén, A., Gessesse, A., and Øvreås, L., Prokaryotic community diversity along an increasing salt gradient in a soda ash concentration pond, Microb. Ecol., 2016, vol. 71, pp. 326–338.CrossRefPubMedGoogle Scholar
  21. Sorokin, D.Y., Berben, T., Melton, E.D., Overmars, L., Vavourakis, C., and Muyzer, G., Microbial diversity and biogeochemical cycling in soda lakes, Extremophiles, 2014, vol. 18, pp. 791–809.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Sorokin, D.Y., Chernyh, N.A., and Poroshina, M.N., Desulfonatronobacter acetioxydans sp. nov.,—a first acetateoxidizing extremely salt-tolerant alkaliphilic sulfate-reducing bacterium from a hypersaline soda lake, Extremophiles, 2015, vol. 19, pp. 899–907.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Sorokin, D.Y., Gorlenko, V.M., Namsaraev, B.B., Namsaraev, Z.B., Lysenko, A.M., Eshinimaev, B.T., Khmelenina, V.N., Trotsenko, Y.A., and Kuenen, J.G., Prokaryotic communities of the north-eastern Mongolian soda lakes, Hydrobiologia, 2004, vol. 522, pp. 235–248.CrossRefGoogle Scholar
  24. Sorokin, D.Y., Kuenen, J.G., and Muyzer, G., The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes, Front. Microbiol., 2011, vol. 2, pp. 1–16.CrossRefGoogle Scholar
  25. Sorokin, D.Y., Makarova, K.S., Abbas, B., Ferrer, M., Golyshin, P.N., Galinski, E.A., Ciordia, S., Mena, M.C., Merkel, A.Y., Wolf, Y.I., van Loosdrecht, M.C.M., and Koonin, E.V., Discovery of extremely halophilic, methylreducing euryarchaea provides insights into the evolutionary origin of methanogenesis, Nat. Microbiol., 2017, vol. 2, article 17081.Google Scholar
  26. Sorokin, D.Y., Panteleeva, A.N., Tourova, T.P., and Muyzer, G., Haloalkaliphilic heterotrophic sulfate-reducing bacteria from soda lakes and description of Desulfonatronobacter acidivorans gen. nov., sp. nov., and Desulfobulbus alkaliphilus sp. nov., Int. J. Syst. Evol. Microbiol., 2012, vol. 62, pp. 2107–2113.CrossRefPubMedGoogle Scholar
  27. Sorokin, D.Y., Tourova, T.P., Kolganova, T.V., Sjollema, K.A., and Kuenen, J.G., Thioalkalispira microaerophila gen. nov., sp. nov., a novel lithoautotrophic, sulfur-oxidizing bacterium from a soda lake, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 2175–2182.PubMedGoogle Scholar
  28. Tsyrenova, D.D., Bryanskaya, A.V., Namsaraev, Z.B., and Akimov, V.N., Taxonomic and ecological characterization of cyanobacteria from some brackish and saline lakes of Southern Transbaikal Region, Microbiology (Moscow), 2011, vol. 80, pp. 216–227.CrossRefGoogle Scholar
  29. Tsyrenova, D.D., Kozyreva, L.P., Namsaraev, B.B., Bryanskaya, A.V., and Namsaraev, Z.B., Structure and formation properties of the haloalkaliphilic community of Lake Khilganta, Microbiology (Moscow), 2011, vol. 80, pp. 237–243.CrossRefGoogle Scholar
  30. Vasil’ev, E.K., Kachestvennyi rengenofaznyi analiz (Qulitative X-ray Phase Analysis), Novosibirsk: Nauka, 1986.Google Scholar
  31. Vavourakis, C.D., Ghai, R., Rodriguez-Valera, F., Sorokin, D.Y., Tringe, S.G., Hugenholtz, P., and Muyzer, G., Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline soda lake brines, Front. Microbiol., 2016, vol. 7, p. 211.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Xiong, J., Liu, Y., Lin, X., Zhang, H, Zeng, J., Hou, J., Yang, Y., Yao, T., Knight, R., and Chu, H. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau, Environ. Microbiol., 2012, vol. 14, pp. 2457–2466.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Zaitseva, S.V., Abidueva, E.Yu., Buryukhaev, S.P., and Namsaraev, B.B., Factors controlling the activity of the microbial community of the alkaline Lake Beloe (Transbaikal region), Microbiology (Moscow), 2012, vol. 81, pp. 468–476.CrossRefGoogle Scholar
  34. Zakharyuk, A., Kozyreva, L., Ariskina, E., Troshina, O., Kopitsyn, D., and Shcherbakova, V., Alkaliphilus namsaraevii sp. nov., an alkaliphilic iron-and sulfur-reducing bacterium isolated from a steppe soda lake, Int. J. Syst. Evol. Microbiol., 2017, vol. 67, pp. 1990–1995.CrossRefPubMedGoogle Scholar
  35. Zakharyuk, A.G., Kozyreva, L.P., Khijniak, T.V., Namsaraev, B.B., and Shcherbakova, V.A., Desulfonatronum zhilinae sp. nov., a novel haloalkaliphilic sulfate-reducing bacterium from soda Lake Alginskoe, Trans-Baikal Region, Russia, Extremophiles, 2015, vol.19, pp. 673–680.CrossRefPubMedGoogle Scholar
  36. Zhong, Z.-P., Liu, Y., Miao, L.-L., Wang, F., Chu, L.-M., Wang, J.-L., and Liu, Z.-P., Prokaryotic community structure driven by salinity and ionic concentrations in plateau lakes of the Tibetan Plateau, Appl. Environ. Microbiol., 2016, vol. 82, pp. 1846–1858.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. V. Zaitseva
    • 1
    Email author
  • E. Yu. Abidueva
    • 1
  • A. A. Radnagurueva
    • 1
  • S. M. Bazarov
    • 1
  • S. P. Buryukhaev
    • 1
  1. 1.Institute of General and Experimental Biology, Siberian BranchRussian Academy of SciencesUlan-UdeRussia

Personalised recommendations