, Volume 87, Issue 4, pp 519–528 | Cite as

Diversity of Heterotrophic Halophilic Bacteria Isolated from Coastal Solar Salterns, Bulgaria and Their Ability to Synthesize Bioactive Molecules with Biotechnological Impact

  • I. Boyadzhieva
  • I. Tomova
  • N. Radchenkova
  • M. KambourovaEmail author
  • A. Poli
  • E. Vasileva-Tonkova
Experimental Articles


Investigations on the microbial life in several coastal solar salterns have revealed the presence of novel organisms and synthesis of unusual molecules active in extreme conditions which might be useful in different biotechnological industries. Biodiversity of heterotrophic aerobic bacteria isolated from two salterns, Pomorie salterns and Burgas salterns located at Burgas Bay, Black Sea coast, Bulgaria, as well as ability of the isolates to synthesize biotechnologically valuable compounds were investigated. The results revealed high taxonomic and metabolic bacterial diversity—we isolated 20 morphologically different moderately halophilic and two halotolerant strains affiliated with 11 species from eight genera referred to the phyla Proteobacteria, Firmicutes, and Actinobacteria. Gram-negative bacteria belonged to the genera Halomonas, Chromohalobacter, Salinivibrio, Cobetia, and Nesiotobacter, and gram-positive strains were representatives of the genera Virgibacillus, Salinicoccus, and Brevibacterium. All isolates were found to be alkalitolerant, and 41% of them were psychrotolerant. The strains degraded nine of the tested 18 substrates; polygalacturonase, catalase, phytase, and lipase producers were predominant. This is the first reported detection of xanthan lyase, gellan lyase, arabinase, and phytase activities in halophilic bacteria. Nine of the strains belonging to five different genera were found to produce exopolysaccharides (EPS). The highest level of EPS was observed in Chromohalobacter canadensis strain 28. More than a half of the strains displayed antimicrobial activity against one to five test bacteria and yeasts. The present study is the first report on halophilic bacteria isolated from salterns at the Black Sea coast indicating that the investigated area is an untapped resource of halophilic bacteria with biotechnological potential.


coastal solar salterns halophilic heterotrophic bacteria hydrolytic enzymes exopolysaccharides antimicrobial activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J., Basic local alignment search tool, J. Mol. Biol., 1990, vol. 215, no. 3, pp. 403–410.CrossRefPubMedGoogle Scholar
  2. Antón, J., Rosselo-Mora, R., Rodriguez-Valera, F., and Amann, R., Extremely halophilic bacteria in crystallizer ponds from solar salterns, Appl. Environ. Microbiol., 2000, vol. 66, no. 7, pp. 3052–3057.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Atanasova, N.S., Pietilä, M.K., and Oksanen, H.M., Diverse antimicrobial interactions of halophilic archaea and bacteria extend over geographical distances and cross the domain barrier, Microbiol. Open, 2013, vol. 2, no. 5, pp. 811–825.Google Scholar
  4. Baati, H., Amdouni, R., Gharsallah, N., Sghir, A., and Ammar, E., Isolation and characterization of moderately halophilic bacteria from Tunisian solar saltern, Curr. Microbiol., 2010, vol. 60, no. 3, pp. 157–161.CrossRefPubMedGoogle Scholar
  5. Ballav, S., Kerkar, S., Thomas, S., and Augustine, N., Halophilic and halotolerant actinomycetes from a marine saltern of Goa, India producing antibacterial metabolites, J. Biosci. Bioeng., 2015, vol. 119, no 3, pp. 323–330.CrossRefPubMedGoogle Scholar
  6. Berrada, I., Willems, A., De Vos, P., El Fahime, E.M., Swings, J., Bendaou, N., Melloul, M., and Amar, M., Diversity of culturable moderately halophilic and halotolerant bacteria in a marsh and two salterns a protected ecosystem of Lower Loukkos (Morocco), Afr. J. Microbiol. Res., 2012, vol. 6, no. 10, pp. 2419–2434.Google Scholar
  7. Biswas, J. and Paul, A.K., Production of extracellular enzymes by halophilic bacteria isolated from solar salterns, Int. J. Appl. Biol. Pharm., 2013, vol. 4, no. 4, pp. 30–36.Google Scholar
  8. Biswas, J. and Paul, A.K., Production of extracellular polymeric substances by halophilic bacteria of solar salterns, Chinese J. Biol., 2014, article ID 205731, 12 pages.Google Scholar
  9. Chen, L., Wang, G., Bu, T., Zhang, Y., Wang, Y., Liu, M., and Lin, X., Phylogenetic analysis and screening of antimicrobial and cytotoxic activities of moderately halophilic bacteria isolated from the Weihai Solar Saltern (China), World J. Microbiol. Biotechnol., 2010, vol. 26, no. 5, pp. 879–888.CrossRefGoogle Scholar
  10. Choi, D.H. and Cho, B.C., Citreimonas salinaria gen. nov., sp. nov., a member of the Roseobacter clade isolated from a solar saltern, Int. J. Syst. Evol. Microbiol., 2006, vol. 56, pp. 2799–2803.CrossRefPubMedGoogle Scholar
  11. Cosa, S., Mabinya, L.V., Olaniran, O.A., Okoh, O.O., Bernard, K., Deyzel, S., and Okoh, A.I., Bioflocculant production by Virgibacillus sp. Rob isolated from the bottom sediment of Algoa Bay in the Eastern Cape, South Africa, Molecules, 2011, vol. 16, no. 3, pp. 2431–2442.PubMedGoogle Scholar
  12. De la Haba, R.R., Arahal, D.R., Márquez, M.C., and Ventosa, A., Phylogenetic relationships within the family Halomonadaceae based on comparative 23S and 16S rRNA gene sequence analysis, Int. J. Syst. Evol. Microbiol., 2010, vol. 60, no. 4, pp. 737–748.Google Scholar
  13. De la Haba, R.R., Márquez, M.C., Papke, R.T., and Ventosa, A., Multilocus sequence analysis of the family Halomonadaceae, Int. J. Syst. Evol. Microbiol., 2012, vol. 62, no. 3, pp. 520–538.Google Scholar
  14. Gupta, S., Sharma, P., Dev, K., and Sourirajan, A., Halophilic bacteria of Lunsu produce an array of industrially important enzymes with salt tolerant activity, Biochem. Res. Int., 2016, article ID 9237418, 10 pages.Google Scholar
  15. Hidri, D.E., Guesmi, A., Najjari, A., Cherif, H., Ettoumi, B., Hamdi, C., Boudabous, A., and Cherif, A., Cultivationdependrnt assessment, diversity, and ecology of haloalkaliphilic bacteria in arid saline systems of southern Tunisia, Biomed. Res. Int., 2013, article 648141.Google Scholar
  16. Jacob, H.J., Classification of halophilic heterotrophic bacteria thriving in the Jordanian Dead Sea littoral zone, J. Biol. Sci., 2012, vol. 12, no. 4, pp. 246–252.CrossRefGoogle Scholar
  17. Jakobsen, T.F., Kjeldsen, K.U., and Ingvorsen, K., Desulfohalobium utahense sp. nov., a moderately halophilic, sulfate-reducing bacterium isolated from Great Salt Lake, Int. J. Syst. Evol. Microbiol., 2006, vol. 56, pp. 2063–2069.CrossRefPubMedGoogle Scholar
  18. Jose, P.A. and Jebakumar, R.D.J., Phylogenetic appraisal of antagonistic, slow growing actinomycetes isolated from hypersaline inland solar salterns at Sambhar salt lake, India, Front. Microbiol., 2013, vol. 4, article 190.Google Scholar
  19. Joshi, A.A., Kanekar, P.P., Kelkar, A.S., Shouche, Y.S., Vani, A.A., Borgave, S.B., and Sarnaik, S.S., Cultivable bacterial diversity of alkaline Lonar Lake, India, Microb. Ecol., 2008, vol. 55, no. 2, pp. 163–172.CrossRefGoogle Scholar
  20. Kambourova, M., Tomova, I., Boyadzhieva, I., Radchenkova, N., and Vasileva-Tonkova, E., Unusually high archaeal diversity in a crystallizer pond, Pomorie salterns, Bulgaria, revealed by phylogenetic analysis, Archaea, 2016a, article ID 7459679.Google Scholar
  21. Kambourova, M., Tomova, I., Boyadzhieva, I., Radchenkova, N., and Vasileva-Tonkova, E., Phylogenetic analysis of the bacterial community in a crystallizer pond, Pomorie salterns, Bulgaria, Biotechnol. Biotechnol. Equip., 2017, vol.31, no. 2, pp. 325–332.CrossRefGoogle Scholar
  22. Kumar, A., Chanderman, A., Makolomakwa, M., Perumal, K., and Singh, S., Microbial production of phytases for combating environmental phosphate pollution and other diverse applications, Crit. Rev. Env. Sci. Tec., 2016, vol. 46, pp. 556–591.CrossRefGoogle Scholar
  23. Kumar, S., Karan, R., Kapoor, S., Singh, S.P., and Khare, S.K., Screening and isolation of halophilic bacteria producing industrially important enzymes, Braz. J. Microbiol., 2012, vol. 43, no. 4, pp. 1595–1603.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Labrenz, M., Collins, M.D., Lawson, P.A., Tindall, B.J., Schumann, P., and Hirsch, P. Roseovarius tolerans gen. nov., sp. nov., a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake, Int. J. Syst. Bacteriol., 1999, vol. 49, no. 1, pp. 137–147.CrossRefPubMedGoogle Scholar
  25. León, M.J., Fernández, A.B., Ghai, R., Sánchez-Porro, C., Rodriguez-Valera, F., and Ventosa, A., From metagenomics to pure culture: isolation and characterization of the moderately halophilic bacterium Spiribacter salinus gen. nov., sp. nov., Appl. Environ. Microbiol., 2014, vol. 80, no. 13, pp. 3850–3857.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Luque, R., Béjar, V., Quesada, E., and Llamas, I., Diversity of halophilic bacteria isolated from Rambla Salada, Murcia (Spain), Can. J. Microbiol., 2014, vol. 60, no. 12, pp. 839–846.CrossRefPubMedGoogle Scholar
  27. Maidak, B.L., Larsen, N., McCaughey, M.J., Overbeek, R., Olsen, G.J., Fogel, K., Blandy, J., and Woese, C.R., The Ribosomal Database Project, Nucleic Acids Res., 1994, vol. 22, no. 17, pp. 3485–3487.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Moreno, M.L., Pérez, D., García, M.T., and Mellado, E., Halophilic bacteria as a source of novel hydrolytic enzymes, Life, 2013, vol. 3, no. 1, pp. 38–51.CrossRefGoogle Scholar
  29. Ollivier, B., Hatchikian, C.E., Prensier, G., Guezennec, J., and Garcia, J.L., Desulfohalobium retbaense gen. nov., sp. nov., a halophilic sulphate reducing bacterium from sediments of a hypersaline lake in Senegal, Int. J. Syst. Bacteriol., 1991, vol. 41, no. 1, pp. 74–81.CrossRefGoogle Scholar
  30. Oren, A., The bioenergetic basis for the decrease in metabolic diversity at increasing salt concentrations: implications for the functioning of salt lake ecosystems, Hydrobiologia, 2001, vol. 466, nos. 1−3, pp. 61–72.CrossRefGoogle Scholar
  31. Oren, A., Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications, J. Ind. Microbiol. Biotechnol., 2002, vol. 28, no. 1, pp. 56–63.CrossRefPubMedGoogle Scholar
  32. Oren, A., Industrial and environmental applications of halophilic microorganisms, Environ. Technol., 2010, vol. 31, nos. 8−9, pp. 825–834.CrossRefPubMedGoogle Scholar
  33. Pasić, L., Ulrih, N.P., Crnigoj, M., Grabnar, M., and Velikonja, B.H., Haloarchaeal communities in the crystallizers of two adriatic solar salterns, Can. J. Microbiol., 2007, vol. 53, no. 1, pp. 8–18.CrossRefPubMedGoogle Scholar
  34. Poli, A., Kazak, H., Gürleyendağ, B., Tommonaro, G., Pieretti, G., Öner, E.T., and Nicolaus, B., High level synthesis of levan by a novel Halomonas species growing on defined media, Carbohydr. Polym., 2009, vol. 78, no. 4, pp. 651–657.CrossRefGoogle Scholar
  35. Poli, A., Moriello, V.S., Esposito, E., Lama, L., Gambacorta, A., and Nicolaus, B., Exopolysaccharide production by a new Halomonas strain CRSS isolated from saline lake Cape Russell in Antarctica growing on complex and defined media, Biotechnol. Lett., 2004, vol. 26, no. 21, pp. 1635–1638.CrossRefPubMedGoogle Scholar
  36. Poli, A., Nicolaus, B., Denizci, A.A., Yavuzturk, B., and Kazan, D., Halomonas smyrnensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium, Int. J. Syst. Evol. Microbiol., 2013, vol. 63, no. 1, pp. 10–18.CrossRefPubMedGoogle Scholar
  37. Rohban, R., Amoozegar, M. A., and Ventosa, A., Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran, J. Ind. Microbiol. Biotechnol., 2009, vol. 36, no. 3, pp. 333–340.CrossRefGoogle Scholar
  38. Romano, I., Gambacorta, A., Lama, L., Nicolaus, B., and Giordano, A., Salinivibrio costicola subsp. alcaliphilus subsp. nov., a haloalkaliphilic aerobe from Campania Region (Italy), Syst. Appl. Microbiol., 2005, vol. 28, no. 7, pp. 34–42.CrossRefPubMedGoogle Scholar
  39. Rothschild, L.J. and Mancinelli, R.L., Life in extreme environments, Nature, 2001, vol. 409, no. 6823, pp. 1092–1101.CrossRefPubMedGoogle Scholar
  40. Sabet, S., Diallo, L., Hays, L., Jung, W., and Dillon, J.G., Characterization of halophiles isolated from solar salterns in Baja California, Mexico, Extremophiles, 2009, vol. 13, no. 4, pp. 643–656.CrossRefGoogle Scholar
  41. Sánchez-Porro, C.S., Martґın, S., Mellado, E., and Ventosa, A., Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes, J. Appl. Microbiol., 2003, vol. 94, no. 2, pp. 295–300.CrossRefPubMedGoogle Scholar
  42. Sorokin, D.Yu., Tourova, T.P., Lysenko, A.M., and Muyzer, G., Diversity of culturable halophilic sulfur-oxidizing bacteria in hypersaline habitats, Microbiology (UK), 2006, vol. 152, no. 10, pp. 3013–3023.CrossRefGoogle Scholar
  43. Swofford, D.L., PAUP*: Phylogenetic Analysis Using Parsimony (* and Other Methods), Version 4, Sunderland, MA: Sinauer Associates, 2002.Google Scholar
  44. Tambekar, D.H. and Dhundale, V.R., Screening of antimicrobial potentials of haloalkaliphilic bacteria isolated from Lonar Lake, Int. J. Pharm. Chem. Biol. Sci., 2013, vol. 3, no. 3, pp. 820–825.Google Scholar
  45. Tamura, K., Dudley, J., Nei, M., and Kumar, S., MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0, Mol. Biol. Evol., 2007, vol. 24, no. 8, pp. 1596− 1599.CrossRefPubMedGoogle Scholar
  46. Tomova, I., Gladka, G., Tashyrev, A., and Vasileva-Tonkova, E., Isolation, identification and hydrolytic enzymes production of aerobic heterotrophic bacteria from two Antarctic islands, Int. J. Environ. Sci., 2014, vol. 4, no. 5, pp. 614–625.Google Scholar
  47. Tomova, I., Lazarkevich, I., Tomova, A., Kambourova,M., and Vasileva-Tonkova, E., Diversity and biosynthetic potential of culturable aerobic heterotrophic bacteria isolated from Magura Cave, Bulgaria, Int. J. Speleol., 2013, vol. 42, no. 1, pp. 65–76.Google Scholar
  48. Venkatachalam, S., Gowdaman, V., and Prabagaran, S.R., Culturable and culture-independent bacterial diversity and the prevalence of cold-adapted enzymes from the Himalayan mountain ranges of India and Nepal, Microb. Ecol., 2015, vol. 69, no. 3, pp. 472–491.CrossRefPubMedGoogle Scholar
  49. Ventosa, A., De la Haba, R., Sanchez-Porro, C., and Thane Papke, R., Microbial diversity of hypersaline environments: a metagenomic approach. Curr. Opin. Microbiol., 2015, vol. 25, pp. 80–87.Google Scholar
  50. Yeon, S.H., Jeong, W.J., and Park, J.S., The diversity of culturable organotrophic bacteria from local salterns, J. Microbiol., 2005, vol. 43, no. 1, pp. 1–10.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. Boyadzhieva
    • 1
  • I. Tomova
    • 1
  • N. Radchenkova
    • 1
  • M. Kambourova
    • 1
    Email author
  • A. Poli
    • 2
  • E. Vasileva-Tonkova
    • 1
  1. 1.The Stephan Angeloff Institute of MicrobiologyBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Consiglio Nazionale delle Ricerche (C.N.R.)Institute of Biomolecular ChemistryPozzuoliItaly

Personalised recommendations