, Volume 87, Issue 2, pp 164–172 | Cite as

Direct Fe(III) Reduction from Synthetic Ferrihydrite by Haloalkaliphilic Lithotrophic Sulfidogens

  • D. G. Zavarzina
  • S. N. Gavrilov
  • T. N. Zhilina
Experimental Articles


Ability to reduce insoluble Fe(III) compounds has not been shown for alkaliphilic lithotrophic sulfate and sulfur reducers. Detection of this metabolic process in sulfidogenic prokaryotes could significantly expand the present knowledge on physicochemical range of their growth and physiological activity, which is now limited by low negative ambient redox potential. Capacity for direct reduction of Fe(III) from chemically synthesized ferrihydrite was tested for eight species of hydrogenotrophic haloalkaliphilic sulfidogens grown with formate or H2 as electron donors in the absence of sulfur compounds in the medium. Out of eight tested species, six reduced iron with formate and five, with hydrogen as the electron donor. Iron reduction correlated with stimulation of growth on formate or hydrogen only in two sulfidogenic species. Analysis of available genomes of five tested species revealed that only Dethiobacter alkaliphilus and Desulfuribacillus alkaliarsenatis possess the gene sets of multiheme cytochromes c required for typical dissimilatory iron reduction. The presence of these genes in two strains with high iron-reducing activity indicates the capacity of some haloalkaliphilic sulfidogenic bacteria for carrying out direct dissimilatory reduction of insoluble Fe(III) forms in the absence of sulfur-containing electron acceptors, i.e., without using sulfide as a soluble mediator of iron reduction. In other studied microorganisms, the ability to reduce iron is probably caused by nonspecific metabolic activity and is not directly linked to energy generation for growth, although the rates of Fe(III) reduction determined in our experiments make it possible to suggest significant role of sulfidogenic microorganisms (normally reducing sulfur and sulfate) in the iron cycle in haloalkaline ecosystems upon decreased content of sulfur compounds.


haloalkaliphilic sulfidogens sulfate reducers sulfur reducers dissimilatory iron reduction soda lakes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abin, C.A. and Hollibaugh, J.T., Draft genome sequence of the type strain Desulfuribacillus alkaliarsenatis AHT28, an obligately anaerobic, sulfidogenic bacterium isolated from Russian soda lake sediments, Genome Announcements, 2016, vol. 4, pp. 1244–1216.Google Scholar
  2. Balashova, V.V. and Zavarzin, G.A., Anaerobic reduction of ferric iron by a hydrogen bacterium, Mikrobiologiya, 1979, vol. 48, pp. 635–639.Google Scholar
  3. Coleman, M.L., Hedrick, D.B., Lovley, D.R., White, D.C., and Pye, K., Reduction of Fe(III) in sediments by sulfate-reducing bacteria, Nature (Letters), 1993, vol. 361, pp. 436–438.CrossRefGoogle Scholar
  4. Hedderich, R., Energy-converting [NiFe] hydrogenases from Archaea and extremophiles: ancestors of complex I, J. Bioenerg. Biomem., 2004, vol. 36, pp. 65–75.CrossRefGoogle Scholar
  5. Holmes, D.E., Bond, D.R., and Lovley, D.R., Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes, Appl. Environ. Microbiol., 2004, vol. 70, pp. 1234–1237.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Jones, J.G., Gardener, S., and Simon, B.M., Reduction of ferric iron by heterotrophic bacteria in lake sediments, J. Gen. Microbiol., 1984, vol. 130, pp. 45–51.Google Scholar
  7. Li, Y.-L., Vali, H., Sears, S.K., Yang, J., Deng, B., and Zhang, C.L., Iron reduction and alteration of nontronite NAu-2 by a sulfate-reducing bacterium, Geochim. Cosmochim. Acta, 2004, vol. 68, pp. 3251–3260.CrossRefGoogle Scholar
  8. Li, Y.-L., Vali, H., Yang, J., Phelps, T.J., and Zhang, C.L., Reduction of iron oxides enhanced by sulfate-reducing bacterium and biogenic H2S, Geomicrobiol. J., 2006, vol. 23, pp. 103–117.CrossRefGoogle Scholar
  9. Lovell, C.R., Przybyla, A., and Ljungdahl, L.G., Primary structure of the thermostable formyltetrahydrofolate synthetase from Clostridium thermoaceticum, Biochemistry, 1990, vol. 29, pp. 5687–5694.CrossRefPubMedGoogle Scholar
  10. Lovley D.R., Dissimilatory Fe(III) and Mn(IV) reducing prokaryotes, in Prokaryotes: Prokaryotic Physiology and Biochemistry, DeLong, E.F., Stackebrandt, E., Lory, S., and Thompson, F., Eds., New York: Springer, 2013, pp. 287–305.CrossRefGoogle Scholar
  11. Lovley, D.R. and Phillips, E.J.P., Rapid assay for microbially reducible ferric iron in aquatic sediments, Appl. Environ. Microbiol., 1987, vol. 53, pp. 1536–1540.PubMedPubMedCentralGoogle Scholar
  12. Lovley, D.R. and Phillips, E.J.P., Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments, Appl. Environ. Microbiol., 1998, vol. 53, pp. 2636–2641.Google Scholar
  13. Lovley, D.R., Roden, E.E., Phillips, E.J.P., and Woodward, J.C., Enzymatic iron and uranium reduction by sulfate reducing bacteria, Marine Geol., 1993, vol. 113, pp. 41–53.CrossRefGoogle Scholar
  14. Lyons, T.W., Reinhard, C.T., and Planavsky, N.J., The rise of oxygen in Earth’s early ocean and atmosphere, Nature, 2014, vol. 506, pp. 307–315.CrossRefPubMedGoogle Scholar
  15. Melton, E.D., Sorokin, D.Y., Overmars, L., Lapidus, A.L., Pillay, M., Ivanova, N., del Rio, T.G., Kyrpides, N.C., Woyke, T., and Muyzer, G., Draft genome sequence of Dethiobacter alkaliphilus strain AHT1T, a gram-positive sulfidogenic polyextremophile, Stand. Genomic Sci., 2017, vol. 12, p. 57.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Pecheritsyna, S.A., Rivkina, E.M., Akimov, V.N., and Shcherbakova, V.A., Desulfovibrio arcticus sp. nov., a psychrotolerant sulfate-reducing bacterium from a cryopeg, Int. J. Syst. Evol. Microbiol., 2012, vol. 62, pp. 33–37.CrossRefPubMedGoogle Scholar
  17. Pikuta, E.V., Hoover, R.B., Bej, A.K., Marsic, D., Whitman, W.B., Cleland, D., and Krader, P., Desulfonatronum thiodismutans sp. nov., a novel alkaliphilic, sulfate-reducing bacterium capable of lithoautotrophic growth, Int. J. System. Evol. Microbiol., 2003, vol. 53, pp. 1327–1332.CrossRefGoogle Scholar
  18. Pikuta, E.V., Zhilina, T.N., Zavarzin, G.A., Kostrikina, N.A., Osipov, G.A., and Rainey, F.A., Desulfonatronum lacustre gen. nov., sp. nov.—a new alkaliphilic sulfate-reducing bacterium utilizing ethanol, Microbiology (Moscow), 1998, vol. 67, pp. 123–131.Google Scholar
  19. Posth, N.R., Konhauser, K.O., and Kappler, A., Banded iron formations, in Encyclopedia of Geobiology, Thiel, V. and Reitner, J., Eds., New York: Springer, 2011.Google Scholar
  20. Reyes, C., Schneider, D., Thürmer, A., Kulkarni, A., Lipka, M., Sztejrenszus, S., Böttcher, M., Daniel, R., and Friedrich, M., Potentially active iron, sulfur, and sulfate reducing bacteria in Skagerrak and Bothnian Bay sediments, Geomicrobiol. J., 2017. doi 10.1080/01490451.2017.1281360Google Scholar
  21. Roden, E., Microbiological controls on geochemical kinetics 1: Fundamentals and case study on microbial Fe(III) oxide reduction, in Kinetics of Water-Rock Interaction, Brantley, S., Kubicki, J., and White, A., Eds., New York: Springer, 2008, pp. 335–415.CrossRefGoogle Scholar
  22. Ryzhmanova, Y., Nepomnyashchaya, Y., Abashina, T., Ariskina, E., Troshina, O., Vainshtein, M., and Scherbakova, V., New sulfate-reducing bacteria isolated from Buryatian alkaline brackish lakes: description of Desulfonatronum buryatense sp. nov., Expremophiles, 2013, vol. 17, pp. 851–859.CrossRefGoogle Scholar
  23. Sass, H., Ramamoorthy, S., Yarwood, C., Langner, H., Schumann, P., Kroppenstedt, R.M., Spring, S., and Rosenzweig, R.F., Desulfovibrio idahonensis sp. nov., sulfate-reducing bacteria isolated from a metal(loid)-contaminated freshwater sediment, Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 2208–2214.CrossRefPubMedGoogle Scholar
  24. Schink, B. and Stams, A.J.M., Syntrophism among prokaryotes, in The Prokaryotes, Dworkin, M., Schleifer, K.H., and Stackebrandt, E., Eds., New York: Springer, 2002.Google Scholar
  25. Shi, L., Dong, H., Reguera, G., Beyenal, H., Lu, A., Liu, J., Yu, H.-Q., and Fredrickson, J.K., Extracellular electron transfer mechanisms between microorganisms and minerals, Nat. Publ. Gr. 2016. doi 10.1038/nrmicro.2016.93Google Scholar
  26. Shi, L., Rosso, K.M., Zachara, J.M., and Fredrickson, J.K., Mtr extracellular electron-transfer pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria: a genomic perspective, Biochem. Soc. Trans., 2012, vol. 40, pp. 1261–1267.CrossRefPubMedGoogle Scholar
  27. Sorokin, D.Yu. and Muyzer, G., Desulfurispira natronophila gen. nov. sp. nov.: an obligately anaerobic dissimilatory sulfur-reducing bacterium from soda lakes, Extremophiles, 2010, vol. 14, pp. 349–355.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Sorokin, D.Y., Berben, T., Melton, E.D., Overmars, L., Vavourakis, C., and Muyzer, G., Microbial diversity and biogeochemical cycling in soda lakes, Extremophiles, 2014, vol. 18, pp. 791–809.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Sorokin, D.Y., Kuenen, J.G., and Muyzer, G., The microbial sulfur cycle in soda lakes, Front. Microbial Physiol., 2011, vol. 2, article 44.Google Scholar
  30. Sorokin, D.Y., Tourova, T.P., Henstra, A.M., Stams, A.J.M., Galinski, E.A., and Muyzer, G., Sulfidogenesis at extremely haloalkaline conditions by Desulfonatronospira thiodismutans gen. nov., sp. nov., and Desulfonatronospira delicata sp. nov.—a novel lineage of Deltaproteobacteria from hypersa-line soda lakes, Microbiology (UK), 2008b, vol. 154, pp. 1444–1453.CrossRefGoogle Scholar
  31. Sorokin, D.Yu., Tourova, T.P., Mußmann, M., and Muyzer, G., Dethiobacter alkaliphilus gen. nov. sp. nov., and Desulfurivibrio alkaliphilus gen. nov. sp. nov.: two novel representatives of reductive sulfur cycle from soda lakes, Extremophiles, 2008a, vol. 12, pp. 431–439.CrossRefPubMedGoogle Scholar
  32. Sorokin, D.Yu., Tourova, T.P., Sukhacheva, M.V., and Muyzer, G., Desulfuribacillus alkaliarsenatis gen. nov. sp. nov., a deep-lineage, obligately anaerobic, dissimilatory sulfur and arsenate-reducing, haloalkaliphilic representative of the order Bacillales from soda lakes, Extremophiles, 2012, vol. 16, pp. 597–605.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Tebo, B.M. and Obraztsova, A.Y., Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors, FEMS Microbiol. Lett., 1998, vol. 162, pp. 193–198.CrossRefGoogle Scholar
  34. Vargas, M., Kashefi, K., Blunt-Harris, E.L., and Lovley, D.R., Microbiological evidence for Fe(III) reduction on early Earth, Nature, 1998, vol. 395, pp. 65–67.CrossRefPubMedGoogle Scholar
  35. Zavarzin, G.A., Epicontinental soda lakes are probable relict biotopes of terrestrial biota formation, Microbiology (Moscow), 1993, vol. 62, pp. 473–470.Google Scholar
  36. Zavarzin, G.A., Zhilina, T.N., and Kevbrin, V.V., The alkaliphilic microbial community and its functional diversity, Microbiology (Moscow), 1999, vol. 68, pp. 503–521.Google Scholar
  37. Zavarzina, D.G., Kolganova, T.V., Boulygina, E.S., Kostrikina, N.A., Tourova, T.P., and Zavarzin, G.A., Geoalkalibacter ferrihydriticus gen. nov. sp. nov., the first alkaliphilic representative of the family Geobacteraceae, isolated from a soda lake, Microbiology (Moscow), 2006, vol. 75, pp. 673–682.CrossRefGoogle Scholar
  38. Zavarzina, D.G., Chistyakova, N.I., Shapkin, A.V., Savenko, A.V., Zhilina, T.N., Kevbrin, V.V., Alekseeva, T.V., Mardanov, A.V., Gavrilov, S.N., and Bychkov, A.Yu., Oxidative biotransformation of biotite and glauconite by alkaliphilic anaerobes: the effect of Fe oxidation on the weathering of phyllosilicates, Chem. Geol., 2016, vol. 439, pp. 98–109.CrossRefGoogle Scholar
  39. Zhilina, T.N., Zavarzin, G.A., Rainey, F.A., Pikuta, E.V., Osipov, G.A., and Kostrikina, N.A., Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic sulfatereducing bacterium, Int. J. Syst. Bacteriol., 1997, vol. 47, pp. 144–149.CrossRefPubMedGoogle Scholar
  40. Zhilina, T.N., Zavarzina, D.G., Kuever, J., Lysenko, A.M., and Zavarzin, G.A., Desulfonatronum cooperativum sp. nov., a novel hydrogenotrophic, alkaliphilic, sulfate-reducing bacterium, from a syntrophic culture growing on acetate, Int. J. Syst. Evol. Microbiol., 2005, vol. 55, pp. 1001–1006.CrossRefPubMedGoogle Scholar
  41. Zhilina, T.N., Zavarzina, D.G., Osipov, G.A., Kostrikina, N.A., and Tourova, T.P., Natronincola ferrireducens sp. nov., and Natronincola peptidovorans sp. nov., new anaerobic alkaliphilic peptolytic iron-reducing bacteria isolated from soda lakes, Microbiology (Moscow), 2009, vol. 78, pp. 455–467.CrossRefGoogle Scholar
  42. Zhilina, T.N., Zavarzina, D.G., Detkova, E.N., Patutina, E.O., and Kuznetsov, B.B., Fuchsiella ferrireducens sp. nov., a novel haloalkaliphilic, lithoautitrophic homoacetogen capable of iron reduction, and emendation of the description of the genus Fuchsiella, Int. J. Syst. Evol. Microbiol., 2015, vol. 65, pp. 2432–2440.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. G. Zavarzina
    • 1
  • S. N. Gavrilov
    • 1
  • T. N. Zhilina
    • 1
  1. 1.Winogradsky Institute of Microbiology, Research Center of BiotechnologyRussian Academy of SciencesMoscowRussia

Personalised recommendations