Isolation and Characterization of Polyester-Based Plastics-Degrading Bacteria from Compost Soils

Abstract

Four potential polyester-degrading bacterial strains were isolated from compost soils in Thailand. These bacteria exhibited strong degradation activity for polyester biodegradable plastics, such as polylactic acid (PLA), polycaprolactone (PCL), poly-(butylene succinate) (PBS) and polybutylene succinate-co-adipate (PBSA) as substrates. The strains, classified according to phenotypic characteristics and 16S rDNA sequence, belonging to the genera Actinomadura, Streptomyces and Laceyella, demonstrated the best polyester- degrading activities. All strains utilized polyesters as a carbon source, and yeast extract with ammonium sulphate was utilized as a nitrogen source for enzyme production. Optimization for polyester-degrading enzyme production by Actinomadura sp. S14, Actinomadura sp. TF1, Streptomyces sp. APL3 and Laceyella sp. TP4 revealed the highest polyester-degrading activity in culture broth when 1% (w/v) PCL (18 U/mL), 0.5% (w/v) PLA (22.3 U/mL), 1% (w/v) PBS (19.4 U/mL) and 0.5% (w/v) PBSA (6.3 U/mL) were used as carbon sources, respectively. All strains exhibited the highest depolymerase activities between pH 6.0–8.0 and temperature 40–60°C. Partial nucleotides of the polyester depolymerase gene from strain S14, TF1 and APL3 were studied. We determined the amino acids making up the depolymerase enzymes had a highly conserved pentapeptide catalytic triad (Gly-His-Ser-Met-Gly), which has been shown to be part of the esterase-lipase superfamily (serine hydrolase).

This is a preview of subscription content, access via your institution.

References

  1. Akutsu-Shigeno, Y., Teeraphatpornchai, T., Teamtisong, K., Nomura, N., Uchiyama, H., Nakahara, T., and Nakajima-Kambe, T., Cloning and sequencing of a poly(DL-lactic acid) depolymerase gene from Paenibacillus amylolyticus strain TB-13 and its functional expression in Escherichia coli, Appl. Environ. Microbiol., 2003, vol. 69, pp. 2498–2504.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    CAS  Article  PubMed  Google Scholar 

  3. Calabia, B.P. and Tokiwa, Y., A novel PHB depolymerase from a thermophilic Streptomyces sp., Biotechnol. Lett., 2006, vol. 28, pp. 383–388.

    CAS  Article  PubMed  Google Scholar 

  4. Chua, T.K., Tseng, M., and Yang, M.K., Degradation of poly(ε-caprolactone) by thermophilic Streptomyces thermoviolaceus subsp. thermoviolaceus 76T-2, AMB Express, 2013, vol. 3, pp. 1–8.

    Article  Google Scholar 

  5. Hanphakphoom, S., Maneewong, N., Sukkhum, S., Tokuyama, S., and Kitpreechavanich, V., Characterization of poly(L-lactide)-degrading enzyme produced by thermophilic filamentous bacteria Laceyella sacchari LP175, J. Gen. Appl. Microbiol., 2014, vol. 60, pp. 13–22.

    CAS  Article  PubMed  Google Scholar 

  6. Hu, X., Osaki, S., Hayashi, M., Kaku, M., Katuen, S., Kobayashi, H., and Kawai, F., Degradation of a terephthalate-containing polyester by thermophilic actinomycetes and Bacillus species derived from composts, J. Polym. Environ., 2008, vol. 16, pp. 103–108.

    CAS  Article  Google Scholar 

  7. Hu, X., Thumarat, U., Zhang, X., Tang, M., and Kawai, F., Diversity of polyester-degrading bacteria in compost and molecular analysis of a thermoactive esterase from Thermobifida alba AHK119, Appl. Microbiol. Biotechnol., 2010, vol. 87, pp. 771–779.

    CAS  Article  PubMed  Google Scholar 

  8. Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A., Practical Streptomyces Genetics, Norwich: The John Innes Foundation, 2000.

    Google Scholar 

  9. Lane, D.J., 16S/23S rRNA sequencing, in Nucleic Acids Techniques in Bacterial Systematics, Stackebrandt, E. and Goodfellow, M., Eds., Wiley, 1991, pp. 115–147.

    Google Scholar 

  10. Li, F., Wang, S., Liu, W., and Chen, G., Purification and characterization of poly (L-lactic acid)-degrading enzymes from Amycolatopsis orientalis ssp. Orientalis, FEMS Microbiol. Lett., 2008, vol. 282, pp. 52–58.

    CAS  Article  PubMed  Google Scholar 

  11. Luengo, J.M., Garćia, B., Sandoval, A., Naharro, G., and Olivera, E.R., Bioplastics from microorganisms, Curr. Opin. Microbiol., 2003, vol. 6, pp. 251–260.

    CAS  Article  PubMed  Google Scholar 

  12. Matsuda, E., Abe, N., Tamakawa, H., Kaneko, J., and Kamio, Y., Gene cloning and molecular characterization of an extracellular poly(L-lactic acid) depolymerase from Amycolatopsis sp. strain K104-1, J. Bacteriol., 2005, vol. 187, pp. 7333–7340.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Mueller, R.J., Biological degradation of synthetic polyesters-enzymes as potential catalysts for polyester recycling, Proc. Biochem., 2006, vol. 41, pp. 2124–2128.

    CAS  Article  Google Scholar 

  14. Nishida, H. and Tokiwa, Y., Distribution of poly(β-hydroxybutyrate) and poly(ε-caprolactone) aerobic degrading microorganisms in different environments, J. Environ. Polym. Degrad., 1993, vol. 1, pp. 227–233.

    CAS  Article  Google Scholar 

  15. Oda, Y., Naoya, O., Teizi, U., and Kenzo, T., Polycaprolactone depolymerase produced by the bacterium Alcaligenes faeaclis, FEMS Microbiol. Lett., 1997, vol. 152, pp. 339–343.

    CAS  Article  PubMed  Google Scholar 

  16. Penkhrue, W., Khanongnuch, C., Masaki, K., Pathom-Aree, W., Punyodom, W., and Lumyong, S., Isolation and screening of biopolymer-degrading microorganisms from northern Thailand, World. J. Microbiol. Biotechnol., 2015, vol. 31, pp. 1431–1442.

    CAS  Article  PubMed  Google Scholar 

  17. Pranamuda, H., Yutaka, T., and Hideo, T., Polylactide degradation by Amycolatopsis sp., Appl. Environ. Microbiol., 1997, vol. 63, pp. 1637–1640.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pridham, T.G., and Gottlieb, D., The utilization of carbon compounds by some Actinomycetales as an aid for species determination, J. Bacteriol., 1948, vol. 56, pp. 107–114.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Puhl, A.A., Selinger, L.B., McAllister1, T.A., and Inglis, G.D., Actinomadura keratinilytica sp. nov., a keratindegrading actinobacterium isolated from bovine manure compost, Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 828–834.

    CAS  Article  PubMed  Google Scholar 

  20. Saitou, N. and Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 1987, vol. 4, pp. 406–425.

    CAS  PubMed  Google Scholar 

  21. Shimao, M., Biodegradation of plastics, Curr. Opin. Biotechnol., 2001, vol. 12, pp. 242–247.

    CAS  Article  PubMed  Google Scholar 

  22. Shinozaki, Y., Morita, T., Cao, X.H., Yoshida, S., Koitabashi, M., Watanabe, T., Suzuki, K., Sameshima-Yamashita, Y., Nakajima-Kambe, T., Fujii, T., and Kitamoto, H.K., Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: cloning, sequencing, and characterization, Appl. Microbiol. Biotechnol., 2013. vol. 97, pp. 2951–2959.

    CAS  Article  PubMed  Google Scholar 

  23. Shirling, E.B. and Gottlieb, D., Methods for characterization of Streptomyces species, Int. J. Syst. Bacteriol., 1966, vol. 16, pp. 313–340.

    Article  Google Scholar 

  24. Sriyapai, T., Somyoonsap, P., Matsui, K., Kawai, F., and Chansiri, K., Cloning of a thermostable xylanase from Actinomadura sp. S14 and its expression in Escherichia coli and Pichia pastoris, J. Biosci. Bioeng., 2011, vol. 111, pp. 528–536.

    CAS  Article  PubMed  Google Scholar 

  25. Staneck, J.L. and Roberts, G.D., Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography, Appl. Microbiol., 1994, vol. 28, pp. 226–231.

    Google Scholar 

  26. Sukkhum, S., Tokuyama, S., Kongsaeree, P., Tamura, T., Ishida, Y., and Kitpreechavanich, V., A novel poly (L-lactide) degrading thermophilic actinomycetes, Actinomadura keratinilytica strain T16-1 and pla sequencing, Afr. J. Microbiol. Res., 2011, vol. 5, pp. 2575–2582.

    CAS  Google Scholar 

  27. Sukkhum, S., Tokuyama, S., and Kitpreechavanich, V., Poly(L-lactide)-degrading enzyme production by Actinomadura keratinilytica T16-1 in 3 L airlift bioreactor and its degradation ability for biological recycle, J. Microbiol. Biotechnol., 2012, vol. 22, pp. 92–99.

    CAS  Article  PubMed  Google Scholar 

  28. Suyama, T., Hosoya, H., and Tokiwa, Y., Bacterial isolates degrading aliphatic polycarbonates, FEMS Microbiol. Lett., 1998, vol. 161, pp. 255–261.

    CAS  Article  PubMed  Google Scholar 

  29. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011, vol. 28, pp. 2731–2739.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Techapun, C., Charoenrat, T., Watanabe, M., Sasaki, K., and Poosaran, N., Optimization of thermostable and alkaline-tolerant cellulose-free xylanase production from agricultural waste by thermotolerant Streptomyces sp. Ab106, using the central composite experimental design, Biochem. Eng. J., 2002, vol. 12, pp. 99–105.

    CAS  Article  Google Scholar 

  31. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G., The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic Acids Res., 1997, vol. 25, pp. 4876–4882.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Tokiwa, Y., and Calabia, B.P., Degradation of microbial polyesters, Biotechnol. Lett., 2004, vol. 26, pp. 1181–1189.

    CAS  Article  PubMed  Google Scholar 

  33. Tokiwa, Y., Iwamoto, A., Koyama, M., Kataoka, N., and Nishida, H., Biological recycling of plastics containing ester bonds, Makromol. Chem. Macromol. Symp., 1992, vol. 57, pp. 273–279.

    CAS  Article  Google Scholar 

  34. Tseng, M., Yang, S.F., Hoang, K.C., Liao, H.C., Yuan, G.F., and Liao, C.C., Actinomadura miaoliensis sp. nov., a thermotolerant polyester-degrading actinomycete, Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 517–520.

    CAS  Article  PubMed  Google Scholar 

  35. Uchida, H., Nakajima-Kambe, T., Shigeno-Akutsu, Y., Nomura, N., Tokiwa, Y., and Nakahara, T., Properties of a bacterium which degrades solid poly(tetramethylene succinate)-co-adipate, a biodegradable plastic, FEMS Microbiol. Lett., 2000. vol. 189, pp. 25–29.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Sriyapai.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sriyapai, P., Chansiri, K. & Sriyapai, T. Isolation and Characterization of Polyester-Based Plastics-Degrading Bacteria from Compost Soils. Microbiology 87, 290–300 (2018). https://doi.org/10.1134/S0026261718020157

Download citation

Keywords

  • Actinomyces
  • depolymerase
  • degradation
  • polyester
  • thermophilic bacteria