Advertisement

Microbiology

, Volume 87, Issue 2, pp 290–300 | Cite as

Isolation and Characterization of Polyester-Based Plastics-Degrading Bacteria from Compost Soils

  • P. Sriyapai
  • K. Chansiri
  • T. Sriyapai
Experimental Articles
  • 97 Downloads

Abstract

Four potential polyester-degrading bacterial strains were isolated from compost soils in Thailand. These bacteria exhibited strong degradation activity for polyester biodegradable plastics, such as polylactic acid (PLA), polycaprolactone (PCL), poly-(butylene succinate) (PBS) and polybutylene succinate-co-adipate (PBSA) as substrates. The strains, classified according to phenotypic characteristics and 16S rDNA sequence, belonging to the genera Actinomadura, Streptomyces and Laceyella, demonstrated the best polyester- degrading activities. All strains utilized polyesters as a carbon source, and yeast extract with ammonium sulphate was utilized as a nitrogen source for enzyme production. Optimization for polyester-degrading enzyme production by Actinomadura sp. S14, Actinomadura sp. TF1, Streptomyces sp. APL3 and Laceyella sp. TP4 revealed the highest polyester-degrading activity in culture broth when 1% (w/v) PCL (18 U/mL), 0.5% (w/v) PLA (22.3 U/mL), 1% (w/v) PBS (19.4 U/mL) and 0.5% (w/v) PBSA (6.3 U/mL) were used as carbon sources, respectively. All strains exhibited the highest depolymerase activities between pH 6.0–8.0 and temperature 40–60°C. Partial nucleotides of the polyester depolymerase gene from strain S14, TF1 and APL3 were studied. We determined the amino acids making up the depolymerase enzymes had a highly conserved pentapeptide catalytic triad (Gly-His-Ser-Met-Gly), which has been shown to be part of the esterase-lipase superfamily (serine hydrolase).

Keywords

Actinomyces depolymerase degradation polyester thermophilic bacteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akutsu-Shigeno, Y., Teeraphatpornchai, T., Teamtisong, K., Nomura, N., Uchiyama, H., Nakahara, T., and Nakajima-Kambe, T., Cloning and sequencing of a poly(DL-lactic acid) depolymerase gene from Paenibacillus amylolyticus strain TB-13 and its functional expression in Escherichia coli, Appl. Environ. Microbiol., 2003, vol. 69, pp. 2498–2504.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.CrossRefPubMedGoogle Scholar
  3. Calabia, B.P. and Tokiwa, Y., A novel PHB depolymerase from a thermophilic Streptomyces sp., Biotechnol. Lett., 2006, vol. 28, pp. 383–388.CrossRefPubMedGoogle Scholar
  4. Chua, T.K., Tseng, M., and Yang, M.K., Degradation of poly(ε-caprolactone) by thermophilic Streptomyces thermoviolaceus subsp. thermoviolaceus 76T-2, AMB Express, 2013, vol. 3, pp. 1–8.CrossRefGoogle Scholar
  5. Hanphakphoom, S., Maneewong, N., Sukkhum, S., Tokuyama, S., and Kitpreechavanich, V., Characterization of poly(L-lactide)-degrading enzyme produced by thermophilic filamentous bacteria Laceyella sacchari LP175, J. Gen. Appl. Microbiol., 2014, vol. 60, pp. 13–22.CrossRefPubMedGoogle Scholar
  6. Hu, X., Osaki, S., Hayashi, M., Kaku, M., Katuen, S., Kobayashi, H., and Kawai, F., Degradation of a terephthalate-containing polyester by thermophilic actinomycetes and Bacillus species derived from composts, J. Polym. Environ., 2008, vol. 16, pp. 103–108.CrossRefGoogle Scholar
  7. Hu, X., Thumarat, U., Zhang, X., Tang, M., and Kawai, F., Diversity of polyester-degrading bacteria in compost and molecular analysis of a thermoactive esterase from Thermobifida alba AHK119, Appl. Microbiol. Biotechnol., 2010, vol. 87, pp. 771–779.CrossRefPubMedGoogle Scholar
  8. Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A., Practical Streptomyces Genetics, Norwich: The John Innes Foundation, 2000.Google Scholar
  9. Lane, D.J., 16S/23S rRNA sequencing, in Nucleic Acids Techniques in Bacterial Systematics, Stackebrandt, E. and Goodfellow, M., Eds., Wiley, 1991, pp. 115–147.Google Scholar
  10. Li, F., Wang, S., Liu, W., and Chen, G., Purification and characterization of poly (L-lactic acid)-degrading enzymes from Amycolatopsis orientalis ssp. Orientalis, FEMS Microbiol. Lett., 2008, vol. 282, pp. 52–58.CrossRefPubMedGoogle Scholar
  11. Luengo, J.M., Garćia, B., Sandoval, A., Naharro, G., and Olivera, E.R., Bioplastics from microorganisms, Curr. Opin. Microbiol., 2003, vol. 6, pp. 251–260.CrossRefPubMedGoogle Scholar
  12. Matsuda, E., Abe, N., Tamakawa, H., Kaneko, J., and Kamio, Y., Gene cloning and molecular characterization of an extracellular poly(L-lactic acid) depolymerase from Amycolatopsis sp. strain K104-1, J. Bacteriol., 2005, vol. 187, pp. 7333–7340.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Mueller, R.J., Biological degradation of synthetic polyesters-enzymes as potential catalysts for polyester recycling, Proc. Biochem., 2006, vol. 41, pp. 2124–2128.CrossRefGoogle Scholar
  14. Nishida, H. and Tokiwa, Y., Distribution of poly(β-hydroxybutyrate) and poly(ε-caprolactone) aerobic degrading microorganisms in different environments, J. Environ. Polym. Degrad., 1993, vol. 1, pp. 227–233.CrossRefGoogle Scholar
  15. Oda, Y., Naoya, O., Teizi, U., and Kenzo, T., Polycaprolactone depolymerase produced by the bacterium Alcaligenes faeaclis, FEMS Microbiol. Lett., 1997, vol. 152, pp. 339–343.CrossRefPubMedGoogle Scholar
  16. Penkhrue, W., Khanongnuch, C., Masaki, K., Pathom-Aree, W., Punyodom, W., and Lumyong, S., Isolation and screening of biopolymer-degrading microorganisms from northern Thailand, World. J. Microbiol. Biotechnol., 2015, vol. 31, pp. 1431–1442.CrossRefPubMedGoogle Scholar
  17. Pranamuda, H., Yutaka, T., and Hideo, T., Polylactide degradation by Amycolatopsis sp., Appl. Environ. Microbiol., 1997, vol. 63, pp. 1637–1640.PubMedPubMedCentralGoogle Scholar
  18. Pridham, T.G., and Gottlieb, D., The utilization of carbon compounds by some Actinomycetales as an aid for species determination, J. Bacteriol., 1948, vol. 56, pp. 107–114.PubMedPubMedCentralGoogle Scholar
  19. Puhl, A.A., Selinger, L.B., McAllister1, T.A., and Inglis, G.D., Actinomadura keratinilytica sp. nov., a keratindegrading actinobacterium isolated from bovine manure compost, Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 828–834.CrossRefPubMedGoogle Scholar
  20. Saitou, N. and Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 1987, vol. 4, pp. 406–425.PubMedGoogle Scholar
  21. Shimao, M., Biodegradation of plastics, Curr. Opin. Biotechnol., 2001, vol. 12, pp. 242–247.CrossRefPubMedGoogle Scholar
  22. Shinozaki, Y., Morita, T., Cao, X.H., Yoshida, S., Koitabashi, M., Watanabe, T., Suzuki, K., Sameshima-Yamashita, Y., Nakajima-Kambe, T., Fujii, T., and Kitamoto, H.K., Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: cloning, sequencing, and characterization, Appl. Microbiol. Biotechnol., 2013. vol. 97, pp. 2951–2959.CrossRefPubMedGoogle Scholar
  23. Shirling, E.B. and Gottlieb, D., Methods for characterization of Streptomyces species, Int. J. Syst. Bacteriol., 1966, vol. 16, pp. 313–340.CrossRefGoogle Scholar
  24. Sriyapai, T., Somyoonsap, P., Matsui, K., Kawai, F., and Chansiri, K., Cloning of a thermostable xylanase from Actinomadura sp. S14 and its expression in Escherichia coli and Pichia pastoris, J. Biosci. Bioeng., 2011, vol. 111, pp. 528–536.CrossRefPubMedGoogle Scholar
  25. Staneck, J.L. and Roberts, G.D., Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography, Appl. Microbiol., 1994, vol. 28, pp. 226–231.Google Scholar
  26. Sukkhum, S., Tokuyama, S., Kongsaeree, P., Tamura, T., Ishida, Y., and Kitpreechavanich, V., A novel poly (L-lactide) degrading thermophilic actinomycetes, Actinomadura keratinilytica strain T16-1 and pla sequencing, Afr. J. Microbiol. Res., 2011, vol. 5, pp. 2575–2582.Google Scholar
  27. Sukkhum, S., Tokuyama, S., and Kitpreechavanich, V., Poly(L-lactide)-degrading enzyme production by Actinomadura keratinilytica T16-1 in 3 L airlift bioreactor and its degradation ability for biological recycle, J. Microbiol. Biotechnol., 2012, vol. 22, pp. 92–99.CrossRefPubMedGoogle Scholar
  28. Suyama, T., Hosoya, H., and Tokiwa, Y., Bacterial isolates degrading aliphatic polycarbonates, FEMS Microbiol. Lett., 1998, vol. 161, pp. 255–261.CrossRefPubMedGoogle Scholar
  29. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011, vol. 28, pp. 2731–2739.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Techapun, C., Charoenrat, T., Watanabe, M., Sasaki, K., and Poosaran, N., Optimization of thermostable and alkaline-tolerant cellulose-free xylanase production from agricultural waste by thermotolerant Streptomyces sp. Ab106, using the central composite experimental design, Biochem. Eng. J., 2002, vol. 12, pp. 99–105.CrossRefGoogle Scholar
  31. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G., The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic Acids Res., 1997, vol. 25, pp. 4876–4882.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Tokiwa, Y., and Calabia, B.P., Degradation of microbial polyesters, Biotechnol. Lett., 2004, vol. 26, pp. 1181–1189.CrossRefPubMedGoogle Scholar
  33. Tokiwa, Y., Iwamoto, A., Koyama, M., Kataoka, N., and Nishida, H., Biological recycling of plastics containing ester bonds, Makromol. Chem. Macromol. Symp., 1992, vol. 57, pp. 273–279.CrossRefGoogle Scholar
  34. Tseng, M., Yang, S.F., Hoang, K.C., Liao, H.C., Yuan, G.F., and Liao, C.C., Actinomadura miaoliensis sp. nov., a thermotolerant polyester-degrading actinomycete, Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 517–520.CrossRefPubMedGoogle Scholar
  35. Uchida, H., Nakajima-Kambe, T., Shigeno-Akutsu, Y., Nomura, N., Tokiwa, Y., and Nakahara, T., Properties of a bacterium which degrades solid poly(tetramethylene succinate)-co-adipate, a biodegradable plastic, FEMS Microbiol. Lett., 2000. vol. 189, pp. 25–29.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of Microbiology, Faculty of ScienceSrinakharinwirot UniversityBangkokThailand
  2. 2.Department of Biochemistry, Faculty of MedicineSrinakharinwirot UniversityBangkokThailand
  3. 3.Faculty of Environmental Culture and EcotourismSrinakharinwirot UniversityBangkokThailand
  4. 4.Center of Excellence in BiosensorsSrinakharinwirot UniversityBangkokThailand

Personalised recommendations