Advertisement

Microbiology

, Volume 87, Issue 2, pp 238–248 | Cite as

Microbial Community Composition and Rates of the Methane Cycle Microbial Processes in the Upper Sediments of the Yamal Sector of the Southwestern Kara Sea

  • A. S. Savvichev
  • I. I. Rusanov
  • V. V. Kadnikov
  • A. V. Beletskii
  • N. V. Ravin
  • N. V. Pimenov
Experimental Articles

Abstract

Geochemical, biogeochemical, and molecular genetic investigation of the upper (0–5 cm) bottom sediments of the Yamal sector of the Kara Sea was carried out. The Yamal sector is well-protected from the massive inflow of river water. The sediments were oxidized at the surface and weakly reduced in the 3−5-cm layer. Corg content varied from 0.1 to 1.3%, while the level of dissolved СН4 was 1.9 to 20.3 μmol L–1. The isotopic composition of organic matter (OM) carbon, δ13Corg, varied from–27.5 to–22.2‰ (–25.4‰ on average). The share of terrigenous OM was 13.3 to 72.2% (48.9% on average). The rate of methane production, methane oxidation, and sulfate reduction varied from 0.8 to 9.0 (2.7 on average) nmol СН4 dm–3 day–1, from 9.9 to 103 (31.6 on average) nmol СН4 dm–3 day–1, and from 0.49 to 2.2 (1.1 on average) μmol S dm–3 day–1, respectively. High-throughput sequencing of the amplicons of the 16S rRNA genes was used to reveal the physiological groups of microorganisms responsible for the processes of methane production and oxidation, sulfate reduction, and oxidation of reduced sulfur compounds. Members of the phylum Woesearchaeota were predominant among archaea. Methanogenic archaea belonged to the families Methanobacteriaceae, Methanococcaceae, and Methanosarcinaceae (Euryarchaeota). Methanotrophs of the family Methylococcaceae were revealed among the Gammaproteobacteria, with their share in the sediments ~1%. In the class Deltaproteobacteria (15.4%), three orders of sulfate reducers were predominant: Desulfobacterales, Desulfovibrionales, and Desulfuromonadales. Oxidation of reduced sulfur compounds was carried out by chemolithoautotrophic bacteria of the genera Sulfurovum, Sulfurimonas, and Arcobacter of the class Epsilonproteobacteria (1.1% of the total microbial number).

Keywords

microbial communities microbial processes methane cycle sulfate reduction Kara Sea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amon, R.M.W. and Meon, B., The biogeochemistry of dissolved organic matter and nutrients in two large Arctic estuaries and potential implications for our understanding of the Arctic Ocean system, Marine Chem., 2004, vol. 92, pp. 311–330.CrossRefGoogle Scholar
  2. Anderson, L.G., Bjork, G., Jutterstrom, S., Pipko, I., Shakhova, N., Semiletov, I., and Wahlstrom, I., East Siberian Sea, an Arctic region of very high biogeochemical activity, Biogeosciences, 2011, vol. 8, pp. 1745–1754.CrossRefGoogle Scholar
  3. Bussmann, I., Distribution of methane in the Lena Delta and Buor-Khaya Bay, Russia, Biogeosciences, 2013, vol. 10, pp. 4641–4652.CrossRefGoogle Scholar
  4. Castelle, C.J., Wrighton, K.C., Thomas, B.C., Hug, L.A., Brown, C.T., Wilkins, M.J., Frischkorn, K.R., Tringe, S.G., Singh, A., Markillie, L.M., Taylor, R.C., Williams, K.H., and Banfield, J.F., Genomic expansion of domain Archaea highlights roles for organisms from new phyla in anaerobic carbon cycling, Curr. Biol., 2015, vol. 25, pp. 690–701.CrossRefPubMedGoogle Scholar
  5. Coffin, R.B., Smith, J.P., Plummer, R.E., Yoza, B., Larsen, R.K., Millholland, L.C., and Montgomery, M.T., Spatial variation in shallow sediment methane sources and cycling on the Alaskan Beaufort Sea Shelf/Slope, Mar. Pet. Geol., 2013, vol. 45, pp. 186–197.CrossRefGoogle Scholar
  6. Cole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J., Kulam-Syed-Mohideen, A.S., McGarrell, D.M., Marsh, T., Garrity, G.M., and Tiedje, J.M., The Ribosomal Database Project: improved alignments and new tools for rRNA analysis, Nucleic Acids Res., 2009, vol. 37, pp. 141–145.CrossRefGoogle Scholar
  7. Crane K., Russian-american long-term census of the Arctic, initial expedition to the Bering and Chukchi seas, Arctic Res. United States, 2005, vol. 19, pp. 73–76.Google Scholar
  8. Dittmar, T. and Kattner, G., The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review, Mar. Chem., 2003, vol. 83, pp. 103–120.CrossRefGoogle Scholar
  9. Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., and Knight, R., UCHIME improves sensitivity and speed of chimera detection, Bioinformatics, 2011, vol. 27, pp. 2194–2200.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Edgar, R.C., Search and clustering orders of magnitude faster than BLAST, Bioinformatics, 2010, vol. 26, pp. 2460–2461.CrossRefPubMedGoogle Scholar
  11. Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J., Lean, J., Lowe, D.C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., and Van Dorland, R., Changes in Atmospheric Constituents and in Radiative Forcing, Ch. 2. Cambridge: Cambridge Univ. Press, 2007, pp. 130–234.Google Scholar
  12. Fry, J.C., Parkes, R.J., Cragg, B.A., Weightman, A.J., and Webster, G., Prokaryotic biodiversity and activity in the deep subseafloor biosphere, FEMS Microbiol. Ecol., 2008, vol. 66, pp. 181–196.CrossRefPubMedGoogle Scholar
  13. Galimov, E.M., Kodina, L.A., Stepanets, O.V., and Korobeinik, G.S., Biogeochemistry of the Russian Arctic. Kara Sea: research results under the SIRRO Project, 1995–2003, Geochem. Int., 2006, vol. 44, pp. 1053–1104.CrossRefGoogle Scholar
  14. Grunke, S., Felden, J., Lichtschlag, A., Girnth, A.-C., de Beer, D., Wenzhofer, F., and Boetius, A., Niche differentiation among mat-forming, sulfide-oxidizing bacteria at cold seeps of the Nile Deep Sea Fan (Eastern Mediterranean Sea), Geobiology, 2011, vol. 9, pp. 330–348.CrossRefPubMedGoogle Scholar
  15. Grünke, S., Lichtschlag, A., de Beer, D., Felden, J., Salman, V., Ramette, A., Schulz-Vogt, H.N., Boetius, A., Mats of psychrophilic thiotrophic bacteria associated with cold seeps of the Barents Sea, Biogeosciences, 2012, vol. 9, pp. 2947–2960.CrossRefGoogle Scholar
  16. Hessen, D., Carroll, J., Kjeldstad, B., Korosov, A., Pettersson, L., Pozdnyakov, D., and Sørensen, K., Input of organic carbon as determinant of nutrient fluxes, light climate and productivity in the Ob and Yenisey estuaries, Estuarine, Coastal Shelf Sci., 2010, vol. 88, pp. 53–62.CrossRefGoogle Scholar
  17. Judd, A., Davies, G., Wilson, J., Holmes, R., Baron, G., and Bryden, I., Contributions to atmospheric methane by natural seepages on the UK continental shelf, Mar. Geol., 1997, vol. 137, pp. 165–189.CrossRefGoogle Scholar
  18. Kadnikov, V.V., Mardanov, A.V., Podosokorskaya, O.A., Gavrilov, S.N., Kublanov, I.V., Beletsky, A.V., Bonch-Osmolovskaya, E.A., and Ravin, N.V., Genomic analysis of Melioribacter roseus, facultatively anaerobic organotrophic bacterium representing a novel deep lineage within Bacteriodetes/Chlorobi group, PLoS One, 2013, vol. 8, no. 1, p. e53047.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J.G., Dlugokencky, E.J., Bergamaschi, P., Bergmann, D., Blake, D.R., Bruhwiler, L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A., et al., Three decades of global methane sources and sinks, Nat. Geosci., 2013, vol. 6, pp. 813–823.CrossRefGoogle Scholar
  20. Kodina, L.A., Tokarev, V.G., Korobeinik, G.S., Vlasova, L.V., and Bogacheva, M.P., Natural background of hydrocarbon gases (C1–C5) in the waters of the Kara Sea, Geochem. Int., 2008, vol. 46, pp. 666–678.CrossRefGoogle Scholar
  21. Labrenz, M., Grote, J., Mammitzsch, K., Boschker, H.T.S., Laue, M., Jost, G., Glaubitz, S., and Jürgens, K., Sulfurimonas gotlandica sp. nov., a chemoautotrophic and psychrotolerant epsilonproteobacterium isolated from a pelagic redoxcline, and an emended description of the genus Sulfurimonas, Int. Syst. Evol. Microbiol., 2013, vol. 63, pp. 4141–4148.CrossRefGoogle Scholar
  22. Lanzén, A., Jørgensen, S.L., Bengtsson, M.M., Jonassen, I., Øvreås, L., and Urich T., Exploring the composition and diversity of microbial communities at the Jan Mayen hydrothermal vent field using RNA and DNA, FEMS Microbiol. Ecol., 2011, vol. 77, pp. 577–589.CrossRefPubMedGoogle Scholar
  23. Lapham, L., Marshall, K., Magen, C., Lyubchich, V., Cooper, L.W., and Grebmeier, J.M., Dissolved methane concentrations in the water column and surface sediments of Hanna Shoal and Barrow Canyon, Northern Chukchi Sea, Deep-Sea Res. Part II: Topical Studies in Oceanography, 2017, vol. 144, pp. 92–103.CrossRefGoogle Scholar
  24. Larkin, J.M. and Henk, M.C., Filamentous sulfide-oxidizing bacteria at hydrocarbon seeps of the Gulf of Mexico, Microsc. Res. Techn., 1996, vol. 33, pp. 23–31.CrossRefGoogle Scholar
  25. Lein, A.Yu. and Ivanov, M.V., Biogeokhimicheskii tsikl metana v okeane (Methane Biogeochemical Cycle in the Ocean), Moscow: Nauka, 2009.Google Scholar
  26. Lein, A.Yu., Makkaveev, P.N., Kravchishina, M.D., Belyaev, N.A., Dara, O.M., Ponyaev, M.S., Rozanov, A.G., Flint, M.V., Savvichev, A.S., Zakharova, E.E., and Ivanov, M.V., Transformation of suspended particulate matter in to sediment in the Kara Sea in September of 2011, Oceanology, 2013, vol. 53, pp. 570–606.CrossRefGoogle Scholar
  27. Lein, A.Yu., Pimenov, N.V., Rusanov, I.I., Pavlova, G.A., Savvichev, A.S., and Verkhovskaya, Z.I., Methane cycle in the Barents Sea, Lithol. Min. Res., 2008, no. 5, pp. 455–479.Google Scholar
  28. Lein, A.Yu., Rusanov, I.I., Savvichev, A.S., Pimenov, N.V., Miller, Yu.M., Ivanov, M.V., and Pavlova, G.A., Biogeochemical processes of the sulfur and carbon cycles in the Kara Sea, Geochem. Int., 1996, vol. 34, pp. 925–941.Google Scholar
  29. Leloup, J., Fossing, H., Kohls, K., Holmkvist, L., Borowski, C., and Jørgensen, B.B., Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation, Environ. Microbiol., 2009, vol. 11, pp. 1278–1291.PubMedGoogle Scholar
  30. Lloyd, K.G., Albert, D.B., Biddle, J.F., Chanton, J.P., Pizarro, O., and Teske, A., Spatial structure and activity of sedimentary microbial communities underlying a Beggiatoa spp. mat in a Gulf of Mexico hydrocarbon seep, PLoS One, 2010, vol. 5, p. e8738.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lösekann, T., Knittel, K., Nadalig, T., Fuchs, B., Niemann, H., Boetius, A., and Amann, R., Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby mud volcano, Barents Sea, Appl. Environ. Microbiol., 2007, vol. 73, pp. 3348–3362.CrossRefPubMedGoogle Scholar
  32. Mamaeva, E.V., Galach’yants, Y.P., Khabudaev, K.V., Petrova, D.P., Pogodaeva, T.V., Khodzher, T.B., and Zemskaya, T.I., Metagenomic analysis of microbial communities of the sediments of the Kara Sea Shelf and the Yenisei Bay, Microbiology (Moscow). 2016, vol. 85, pp. 220–230.CrossRefGoogle Scholar
  33. Matveeva, T., Savvichev, A., Semenova, A., Logvina, E., Kolesnik, A., and Bosin, A., Source, origin, and spatial distribution of shallow sediment methane in the Chukchi Sea, Oceanography, 2015, vol. 28, no. 3, pp. 202–217.CrossRefGoogle Scholar
  34. McClelland, J.W., Holmes, R.M., Dunton, K.H., and Macdonald, R.W., The Arctic Ocean estuary, Estuar. Coast, 2012, vol. 35, pp. 353–368.CrossRefGoogle Scholar
  35. Nagel, B., Gaye, B., Kodina, L., and Lahajnar, N., Stable carbon and nitrogen isotopes as indicators for organic matter sources in the Kara Sea Marine, Geology, 2009, vol. 266, pp. 42–51.Google Scholar
  36. Naidu, A.S., Cooper, L.W., Finey, B.P., Macdonald, R.W., Alexander, C., and Semiletov, I.P., Organic carbon isotope ratios (δ13C) of Arctic Amerasian continental shelf sediments, Int. J. Earth Sci., 2000, vol. 89, pp. 522–532.CrossRefGoogle Scholar
  37. Namsaraev, B.B., Rusanov, I.I., Mitskevich, I.N., Veslopolova, E.F., Bol’shakov, A.M., and Egorov, A.V., Bacterial methane oxidation in the Yenisei River estuary an in the Kara Sea, Okeanologiya, 1995, vol. 35, no. 1, pp. 88–93.Google Scholar
  38. Niemann, H., Losekann, T., de Beer, D., Elvert, M., Nadalig, T., Knittel, K., Amann, R., Sauter, E.J., Schluter, M., Klages, M., Foucher, J.-P., and Boetius, A., Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink, Nature, 2006, vol. 443, pp. 854–858.CrossRefPubMedGoogle Scholar
  39. Omoregie, E.O., Mastalerz, V., de Lange, G., Straub, K. L., Kappler, A., Røy, H., Stadnitskaia, A., Foucher, J.-P., and Boetius, A., Biogeochemistry and community composition of iron-and sulfur-precipitating microbial mats at the Chefren Mud Volcano (Nile Deep Sea Fan, Eastern Mediterranean), Appl. Environ. Microbiol., 2008, vol. 74, pp. 3198–3215.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Pachiadaki, M.G., Kallionaki, A., Dählmann, A., De Lange, G.J., and Kormas, K.A., Diversity and spatial distribution of prokaryotic communities along a sediment vertical profile of a deep-sea mud volcano, Microb. Ecol., 2011, vol. 62, pp. 655–668.Google Scholar
  41. Pimenov, N., Savvichev, A., Rusanov, I., Lein, A., Egorov, A., Gebruk, A., Moskalev, L., and Vogt, P., Microbial processes of carbon cycle as the base of food chain of Haakon Mosby mud volcano benthic community, Geo-Marine Lett., 1999, vol. 19, pp. 89–96.CrossRefGoogle Scholar
  42. Pimenov, N.V. and Bonch-Osmolovskaya, E.A., In situ activity studies in thermal environments, Methods in Microbiology, vol. 35, Extremophiles, Rainey, F.A. and Oren, A., Eds., Amsterdam: Acad. Press, Elsevier, 2006, pp. 29–53.Google Scholar
  43. Pimenov, N.V., Savvichev, A.S., Rusanov, I.I., Lein, A.Yu., and Ivanov, M.V., Microbiological processes of carbon and sulfur cycles at cold methane seeps of the North Atlantic, Microbiology (Moscow), 2010, vol. 69, pp. 709–720.CrossRefGoogle Scholar
  44. Podosokorskaya, O.A., Kadnikov, V.V., Gavrilov, S.N., Mardanov, A.V., Merkel, A.Y., Karnachuk, O.V., Ravin, N.V., Bonch-Osmolovskaya, E.A., and Kublanov, I.V., Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae, Environ. Microbiol., 2013, vol. 15, pp. 1759–1771.CrossRefPubMedGoogle Scholar
  45. Ruff, S.E., Arnds, J., Knittel, K., Amann, R., Wegener, G., Ramette, A., and Boetius, A., Microbial communities of deep-sea methane seeps at Hikurangi continental margin (New Zealand), PLoS One, 2013, vol. 8, no. 9, p. e72627.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sahm, K., Knoblauch, C., and Amann, R., Phylogenetic affiliation and quantification of psychrophilic sulfatereducing isolates in marine arctic sediments, Appl. Environ. Microbiol., 1999, vol. 65, pp. 3976–3981.PubMedPubMedCentralGoogle Scholar
  47. Sakai, T., Kimura, H., and Kato, I., A marine strain of Flavobacteriaceae utilizes brown seaweed fucoidan, Mar. Biotechnol., 2002, vol. 4, pp. 399–405.CrossRefPubMedGoogle Scholar
  48. Savvichev, A.S., Rusanov, I.I., Yusupov, S.K., Pimenov, N.V., and Lein, A.Yu., Microbial processes of the organic matter transformation in the White Sea, Oceanology, 2005, vol. 45, pp. 650–663.Google Scholar
  49. Savvichev, A.S., Zakharova, E.E., Veslopolova, E.F., Rusanov, I.I., Ivanov, M.V., and Lein, A.Yu., Microbial processes of the carbon and sulfur cycles in the Kara Sea, Oceanology, 2010, vol. 50, pp. 893–909.CrossRefGoogle Scholar
  50. Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B., Thallinger, G.G., Van Horn, D.J., and Weber, C.F., Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microbiol., 2009, vol. 75, pp. 7537–7541.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Shakhova, N., Semiletov, I., Salyuk, A., Joussupov, V., Kosmach, D., and Gustafsson, O., Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic shelf, Science, 2010, vol. 327, pp. 1246–1250.CrossRefPubMedGoogle Scholar
  52. Shakhova, N.E., Semiletov, I.P., and Bel’cheva, N.A., Dissolved methane in the arctic shallov shelf waters, Doklady Earth Sci., 2005, vol. 402, pp. 641–645.Google Scholar
  53. Sibuet, M. and Olu, K., Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins, Deep Sea Research Part II: Topical Studies in Oceanography, 1998, vol. 45, nos. 1–3, pp. 517–567.CrossRefGoogle Scholar
  54. Stein, R. and Fahl, K., The Kara Sea: distribution, sources, variability and burial of organic carbon, in The Organic Carbon Cycle in the Arctic Ocean, Stein, R. and MacDonald, R.W., Eds., Berlin: Springer, 2004, pp. 237–266.CrossRefGoogle Scholar
  55. Suslova, M.Y., Lipko, I.A., Mamaeva, E.V., and Parfenova, V.V., Diversity of cultivable bacteria isolated from the water column and bottom sediments of the Kara Sea Shelf, Microbiology (Moscow), 2012, vol. 81, pp. 484–491.CrossRefGoogle Scholar
  56. Vetrov, A.A. and Romankevich, E.A., Genesis of organic matter in the Kara Sea bottom sediments, Oceanology, 2011, vol. 51, pp. 608–615.CrossRefGoogle Scholar
  57. Wuebbles, D.J. and Hayhoe, K., Atmospheric methane and global change, Earth-Sci. Rev., 2002, vol. 57, pp. 177–210.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. S. Savvichev
    • 1
  • I. I. Rusanov
    • 1
  • V. V. Kadnikov
    • 2
  • A. V. Beletskii
    • 2
  • N. V. Ravin
    • 2
  • N. V. Pimenov
    • 1
  1. 1.Winogradsky Institute of Microbiology, Research Center of BiotechnologyRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Bioengineering, Research Center of BiotechnologyRussian Academy of SciencesMoscowRussia

Personalised recommendations