, Volume 87, Issue 2, pp 151–163 | Cite as

Microbial Symbionts of Insects: Genetic Organization, Adaptive Role, and Evolution

  • N. A. Provorov
  • O. P. Onishchuk


The microorganisms forming symbioses with insects play an important role in nutrition, development and evolution of their hosts. They make it possible for their hosts to use poorly digestible nutrients, to resist the biotic and abiotic stresses, and to regulate the metamorphosis. The microsymbionts of insects may be facultative (genetically specialized for symbiosis but retaining the capacity for autonomous existence; they are usually located extracellularly, in the gut, hemolymph, or salivary glands of the host) or obligatory (incapable of autonomous existence due to the loss of large parts of their genomes; they are usually located inside specialized host cells). The intracellular symbionts (endocytobionts) are capable of vertical transmission during the host reproduction, which determines the loss of many housekeeping genes, including the genes for replication, transcription and translation. In some obligatory symbionts, amplification of genes performing the functions useful for the hosts, such as the synthesis of essential amino acids, was found. These symbionts exhibit increased rates of accumulation of mutations, including non-synonymous nucleotide substitutions, reflecting suppression of the purifying selection and activation of genetic drift stimulating the genome reduction. Transfer of some genes from endocytobionts to the nuclear chromosomes of insects enables them to implement the novel metabolic functions, including assimilation of rare nutrients. The obligatory intracellular insect symbionts may be used as models to reconstruct the early stages of evolution of cellular organelles, which involve reduction of essential genes and the loss of genetic individuality of the symbionts, i.e., the ability for self-maintenance and expression of their residual genomes. Genetic analysis of insect microsymbionts extends the opportunities for their practical application associated with biological control of harmful insects (herbivorous, bloodsucking) and stimulation of the beneficial ones (honey collectors, pollinators, antagonists of pests).


symbiotic microorganisms insects synthesis of essential amino acids and cofactors gut microbiome endocytobiosis evolution of bacterial genome theory of symbiogenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acuña, R., Padilla, B.E., Flórez-Ramos, C.P., Rubio, J.D., Herrera, J.C., Benavides, P., Lee, S.-J., Yeats, T.H., Egan, A.N., Doyle, J.J., and Rose, J.K.C., Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, pp. 4197–4202.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Afrikyan, E.K., Kinosyan, M.A., Okasov, A.K., and Kazanchyan, N.L., Specifics of the insect enthomopathogenic microbiota, Dokl. NAS of Armenia, 2014, vol. 114, no. 2, pp. 156–163.Google Scholar
  3. Andongma, A.A., Wan, L., Dong, Y.C., Li, P., Desneux, N., White, J.A., and Niu, C.-Y., Pyrosequencing reveals a shift in symbiotic bacteria populations across life stages of Bactrocera dorsalis, Sci. Rep., 2015, vol. 5, no. 9470. doi 10.1038/srep09470Google Scholar
  4. Baba, T., Ara, T., Okumura, Y., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K.A., Tomita, M., Wanner, B.L., and Mori, H., Construction of Escherichia coli K-12 in-frame, single-gene knock-out mutants—the Keio collection, Mol. Syst. Biol., 2006, vol. 2, no. 1. doi 10.1038/msb4100050Google Scholar
  5. Bodył, A., Mackiewicz, P., and Gagat, P., Organelle evolution: Paulinella breaks a paradigm, Curr. Biol., 2012, vol. 22, pp. 304–305.CrossRefGoogle Scholar
  6. Brewin, N.J., Plant cell wall remodeling in the Rhizobiumlegume symbiosis, Crit. Rev. Plant Sci., 2004, vol. 23, pp. 1–24.CrossRefGoogle Scholar
  7. Broderick, N.A. and Lemaitre, B., Gut-associated microbes of Drosophila melanogaster, Gut Microbes., 2012, vol. 3, pp. 307–321.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Broderick, N.A., Raffa, K.F., and Handelsman, J., Midgut bacteria required for Bacillus thuringiensis insecticidal activity, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, pp. 15196–15199.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Caldera, E.J., Poulsen, M., Suen, G., and Currie, C.R., Insect symbioses: a case study of past, present, and future of fungus-growing ant research, Environ. Entomol., 2009, vol. 38, pp. 78–92.CrossRefPubMedGoogle Scholar
  10. Capuzzo, C., Firrao, G., Mazzon, L., Squartini, A., and Girolami, V., ‘Candidatus Erwinia dacicola’, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin), Int. J. Syst. Evol. Microbiol., 2005, vol. 55, pp. 1641–1647.CrossRefPubMedGoogle Scholar
  11. Charles, H., Balmand, S., Lamelas, A., Cottret, L., Pérez-Brocal, V., Burdin, B., Latorre, A., Febvay, G., Colella, S., Calevro, F., and Rahbé, Y., A genomic reappraisal of symbiotic function in the aphid/Buchnera symbiosis: reduced transporter sets and variable membrane organizations, PLoS One, 2011, vol. 6. e29096. doi 10.1371/journal.pone.0029096CrossRefPubMedPubMedCentralGoogle Scholar
  12. Clark, B.W., Phillips, T.A., and Coats, J.R., Environmental fate and effects of Bacillus thuringiensis (Bt) proteins from transgenic crops: a review, J. Agric. Food Chem., 2005, vol. 53, pp. 4643–4653.CrossRefPubMedGoogle Scholar
  13. Cordaux, R., Bouchon, D., and Grève, P., The impact of endosymbionts on the evolution of host sex-determination mechanisms, Trends Genet., 2011, vol. 27, pp. 332–341.CrossRefPubMedGoogle Scholar
  14. Douglas, A.E., Lessons from studying insect symbioses, Cell Host and Microbe, 2011, vol. 10, pp. 359–366.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Douglas, A.E., The molecular basis of bacterial–insect symbiosis, J. Mol. Biol., 2014, vol. 426, pp. 3830–3837.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dowd, P.F., Insect fungal symbionts: a promising source of detoxifying enzymes, J. Industr. Microbiol., 1992, vol. 9, pp. 149–161.CrossRefGoogle Scholar
  17. Felsenstein, J., The evolutionary advantage of recombination, Genetics, 1974, vol. 78, pp. 737–756.PubMedPubMedCentralGoogle Scholar
  18. Foster, J., Ganatra, M., Kamal, I., Ware, J., Makarova, K., Ivanova, N., Bhattacharyya, A., Kapatral, V., Kumar, S., Posfai, J., Vincze, T., Ingram, J., Moran, L., Lapidus, A., Omelchenko, M., et al., The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode, PLoS Biol., 2005, vol. 3, no. 4. e121.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gil, R., Sabater-Munoz, B., Latorre, A., Silva, F.J., and Moya, A., Extreme genome reduction in Buchnera spp.: toward the minimal genome needed for symbiotic life, Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, pp. 4454–4458.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gonzalez, J.M., Brown, B.J., and Carlton, B.C., Transfer of Bacillus thuringiensis plasmids coding for delta endotoxin among strains of B. thuringiensis and B. cereus, Proc. Natl. Acad. Sci. U. S. A., 1982, vol. 79, pp. 6951–6955.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gosalbes, M.J., Lamelas, A., Moya, A., and Latorre, A., The striking case of tryptophan provision in the cedar aphid Cinara cedri, J. Bacteriol., 2008, vol. 190, pp. 6026–6029.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gross, J. and Bhattacharya, D., Mitochondrial and plastid evolution in eukaryotes: an outsiders’ perspective, Nat. Rev. Genet., 2009, vol. 10, pp. 495–505.CrossRefPubMedGoogle Scholar
  23. Gunduz E.A., Douglas A.E. Symbiotic bacteria enable insect to use a nutritionally inadequate diet, Proc. R. Soc. B. 2009, vol. 276, pp. 987–991.CrossRefGoogle Scholar
  24. Gupta, A.K., Nayduch, D., Verma, P., Shah, B., Ghate, H.V., Patole, M.S., and Shouche, Y.S., Phylogenetic characterization of bacteria in the gut of house flies (Musca domestica L.), FEMS Microbiol. Ecol., 2012, vol. 79, pp. 581–593.CrossRefPubMedGoogle Scholar
  25. Hackstein, J.H.P., van Hoek, A.H.A.M., Leunissen, J.A.M., and Huynen, M., Anaerobic ciliates and their methanogenic endosymbionts, in Symbiosis: Mechanisms and Model Systems, Seckbach, J., Ed., Dordrecht: Kluwer Acad. Publ., 2002, pp. 257–270.Google Scholar
  26. Hotopp, D.J.C., Clark, M.E., Oliveira, D.C., Foster, J.M., Fischer, P., Muñoz Torres, M.C., Giebel, J.D., Kumar, N., Ishmael, N., Wang, S., Ingram, J., Nene, R.V., Shepard, J., Tomkins, J., Richards, S., et al., Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes, Science, 2007, vol. 317, pp. 1753–1756.CrossRefGoogle Scholar
  27. Husnik, F., Nikoh, N., Koga, R., Ross, L., Duncan, R.P., Fujie, M., Tanaka, M., Satoh, N., Bachtrog, D., Wilson, A.C., von Dohlen, C.D., Fukatsu, T., and McCutcheon, J.P., Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis, Cell, 2013, vol. 153, pp. 1567–1578.Google Scholar
  28. Janson, E.M., Stireman, J.O., Singer, M.S., and Abbot, P., Phytophagous insect-microbe mutualisms and adaptive evolutionary diversification, Evolution, 2008, vol. 62, pp. 997–1012.CrossRefPubMedGoogle Scholar
  29. Kandybin, N.V., Patyka, T.I., Ermolova, V.P., and Patyka, V.F., Mikrobiokontrol’ chislennosti nasekomykh i ego dominanta Bacillus thuringiensis (Microbiocontrol of Insect Abundance and Its Dominant, Bacillus thuringiensis), S.-Pb., Pushkin: Inform. Center Plant Protection, 2009.Google Scholar
  30. Keeling, P.J., Jeffrey, D. and Palmer, J.D., Horizontal gene transfer in eukaryotic evolution, Nature Rev. Genet., 2008, vol. 9, pp. 605–618.CrossRefPubMedGoogle Scholar
  31. Kikuchi, Y., Hosokawa, T., and Fukatsu, T., Insectmicrobe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation, Appl. Environ. Microbiol., 2007, vol. 73, pp. 4308–4316.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kim, J.K., Son, W.D., Kim, C.-H., Cho, J.H., Marchetti, R., Silipo, A., Sturiale, L., Park, H.Y., Huh, Y.R., Nakayama, H., Fukatsu, T., Molinaro, A., and Lee, B.L., Insect gut symbiont’s susceptibility to host antimicrobial peptides caused by alteration of bacterial cell envelope, J. Biol. Chem., 2015, vol. 290, pp. 21042–21053.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Koga, R., Tsuchida, T., and Fukatsu, T., Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid, Proc. Roy. Soc. Lond. B, 2003, vol. 270, pp. 2543–2550.CrossRefGoogle Scholar
  34. Latorre, A., Gill, R., Silva, F.J., and Moya, A., Chromosomal stasis versus plasmid plasticity in aphid endosymbiont Buchnera aphidicola, Heredity, 2005, vol. 95, pp. 339–347.CrossRefPubMedGoogle Scholar
  35. Lilburn, T.G., Kim, K.S., Ostrom, N.E., Byzek, K.R., Leadbetter, J.R., and Breznak, J.A., Nitrogen fixation by symbiotic and free-living spirochetes, Science, 2001, vol. 292, pp. 2495–2498.CrossRefPubMedGoogle Scholar
  36. Lithgow, T. and Schneider, A., Evolution of macromolecular import pathways in mitochondria, hy-drogenosomes and mitosomes, Phil. Trans. R. Soc. B, 2010, vol. 365, pp. 799–817.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Liu, L., Huang, X., Zhang, R., Jiang, L., and Qiao, G., Phylogenetic congruence between Mollitrichosiphum (Aphididae: Greenideinae) and Buchnera indicates insect-bacteria parallel evolution, Syst. Entomol., 2013, vol. 38, pp. 81–92.CrossRefGoogle Scholar
  38. Luan, J.-B., Chen, W., Hasegawa, D.K., Simmons, A.M., Wintermantel, W.M., Ling, K.-S., Fei, Z., Liu, S.-S., and Douglas, A.E., Metabolic coevolution in the bacterial symbiosis of whiteflies and related plant sap-feeding insects, Genome Biol. Evol., 2015, vol. 7, pp. 2635–2647.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Manzano-Marín, A. and Latorre, A., The genome of Serratia symbiotica from the aphid Cinara tujafilina zooms in on the process of accommodation to a cooperative intracellular life, Genome Biol. Evol., 2014, vol. 6, pp. 1683–1698.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mehdiabadi, N.J. and Schultz, T.R., Natural history and phylogeny of the fungus-farming ants (Hymenoptera: Formicidae: Myrmicinae: Attini), Myrmecol. News, 2009, vol. 13, pp. 37–55.Google Scholar
  41. Minard, G., Mavingui, P., and Moro, C.V., Diversity and function of bacterial microbiota in the mosquito holobiont, Parasites and Vectors, 2013, vol. 6, no. 146. doi 10.1186/1756-3305-6-146Google Scholar
  42. Moran, N.A., Accelerated evolution and Muller’s ratchet endosymbiotic bacteria, Proc. Natl. Acad. Sci. U. S. A., 1996, vol. 93, pp. 2873–2878.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Moran, N.A., Degnan, P.H., Santos, S.R., Dunbar, H.E., and Ochman, H., The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, pp. 16919–16926.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Moran, N.A., McCutcheon, J.P., and Nakabachi, A., Genomics and evolution of heritable bacterial symbionts, Annu. Rev. Genet., 2008, vol. 42, pp. 165–190.CrossRefPubMedGoogle Scholar
  45. Mueller, U.G., Gerardo, N.M., Aanen, D.K., Six, D.L., and Schultz, T.R., The evolution of agriculture in insects, Annu. Rev. Ecol. Evol. System., 2005, vol. 36, pp. 563–595.CrossRefGoogle Scholar
  46. Nakabachi, A., Yamashita, A., Toh, H., Ishikawa, H., Dunbar, H.E., Moran, N.A., and Hattori, M., The 160-kilobase genome of the bacterial endosymbiont Carsonella, Science, 2006, vol. 314, pp. 267–270.CrossRefPubMedGoogle Scholar
  47. Nikoh, N., Hosokawa, T., and Moriyama, M., Evolutionary origin of insect-Wolbachia nutritional mutualism, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, pp. 10257–10262.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Nikoh, N., Hosokawa, T., Oshima, K., Hattori, M., and Fukatsu, T., Reductive evolution of bacterial genome in insect gut environment, Genome Biol. Evol., 2011, vol. 3, pp. 702–714. doi 10.1093/gbe/evr064CrossRefPubMedPubMedCentralGoogle Scholar
  49. Nikoh, N., McCutcheon, J.P., Kudo, T., Miyagishima, S., and Moran, N.A., Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host, PLoS Genet., 2010, vol. 6, no. 2. e1000827. doi 10.1371/journal.pgen.1000827CrossRefPubMedPubMedCentralGoogle Scholar
  50. Nikoh, N., Tanaka, K., Shibata, F., Kondo, N., Hizume,M., Shimada, M., and Fukatsu, T., Wolbachia genome integrated in an insect chromosome: evolution and fate of laterally transferred endosymbiont genes, Genome Res., 2008, vol. 18, pp. 272–280.Google Scholar
  51. Ohkuma, M., Maeda, Y., Johjima, T., and Kudo, T., Lignin degradation and roles of white rot fungi: study on an efficient symbiotic system in fungus-growing termites and its application to bioremediation, RIKEN Rev., 2001, no. 42, pp. 39–42.Google Scholar
  52. Poulsen, M., Cafaro, M.J., Erhardt, D.P., Little, A.E.F., Gerardo, N.M., Tebbets, B., Klein, B.S., and Currie, C.R., Variation in Pseudonocardia antibiotic defense helps govern parasite-induced morbidity in Acromyrmex leaf-cutting ants, Environ. Microbiol. Rep., 2010, vol. 2, pp. 534–540.CrossRefPubMedGoogle Scholar
  53. Prado, S.S. and Almeida, R.P.P., Role of symbiotic gut bacteria in the development of Acrosternum hilare and Murgantia histrionica, Entomol. Exper. Applic., 2009, vol. 132, pp. 21–29.CrossRefGoogle Scholar
  54. Provorov, N.A. and Vorobyev, N.I., Evolution of host-beneficial traits in nitrogen-fixing bacteria: modeling and construction of systems for interspecies altruism, Appl. Biochem. Microbiol., 2015, vol. 51, no. 4, pp. 381–387.CrossRefGoogle Scholar
  55. Ricci, I., Valzano, M., Ulissi, U., Epis, S., Cappelli, A., and Favia, G., Symbiotic control of mosquito borne disease, Pathogens Global Health, 2012, vol. 106, pp. 380–385.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Richards, A.M., Von Dwingelo, J.E., Price, C.T., and Kwaik, Y.A., Cellular microbiology and molecular ecology of Legionella–amoeba interaction, Virulence, 2013, vol. 4, pp. 307–314.Google Scholar
  57. Rio, R.V.M., Symula, R.E., Wang, J., Lohs, C., Wu, Y., Snyder, A.K., Bjornson, R.D., Oshima, K., Biehl, B.S., Perna, N.T., Hattori, M., and Akso, S., Insight into the transmission biology and species-specific functional capabilities of tsetse (Diptera: Glossinidae) obligate symbiont Wigglesworthia, MBio, 2012, vol. 3, no. 1. e00240–11. doi 10.1128/mBio.00240-11CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sanchez-Contreras, M. and Vlasido, I., The diversity of insect-bacteria interactions and its applications for disease control, Biotechnol. Gen. Engin. Rev., 2008, vol. 25, pp. 203–244.CrossRefGoogle Scholar
  59. Sorokan’, A.V., Rumyantsev, S.D., Ben’kovskaya, G.V., and Maksimov, I.V., Ecological role of microsymbionts in the interactions of plants and phytophagous insects, Usp. Sovr. Biol., 2017, vol. 134, no. 5, pp. 135–150.Google Scholar
  60. Steinhaus, E.A., Insect Microbiology, Ithaca: Comstock, 1947.Google Scholar
  61. Suh, S.-O., Noda, H., and Blackwell, M., Insect symbiosis: derivation of yeast-like endosymbionts within en entomopathogenic filamentous lineage, Mol. Biol. Evol., 2001, vol. 18, pp. 995–1000.CrossRefPubMedGoogle Scholar
  62. Tikhonovich, I.A. and Provorov, N.A., Development of symbiogenetic approaches for studying variation and heredity of superspecies systems, Russ. J. Genet., 2012, vol. 48, pp. 357–368.CrossRefGoogle Scholar
  63. van der Vlugt-Bergmans, C.J.B. and van der Werf, M.J., Genetic and biochemical characterization of a novel monoterpene ε-lactone hydrolase from Rhodococcus erythropolis DCL14, Appl. Environ. Microbiol., 2001, vol. 67, pp. 733–741.CrossRefPubMedPubMedCentralGoogle Scholar
  64. van Ham, R.C., Kamerbeek, J., Palacios, C., Rausell, C., Abascal, F., Bastolla, U., Fernandez, J.M., Jimenez, L., Postigo, M., Silva, F.J., Tamames, J., Viguera, E., Latorre, A., Valencia, A., Moran, F., and Moya, A., Reductive genome evolution in Buchnera aphidicola, Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, pp. 581–586.CrossRefPubMedPubMedCentralGoogle Scholar
  65. van Ham, R.C., Martinez-Torres, D., Moya, A., and Latorre, A., Plasmid-encoded anthranilate synthase (TrpEG) in Buchnera aphidicola from aphids of the family Pemphigidae, Appl. Environ. Microbiol., 1999, vol. 65, pp. 117–125.PubMedPubMedCentralGoogle Scholar
  66. van Hoek, A.H.A.M., Akhmanova, A.S., Huynen, M.A., and Hackstein, J.H.P., A mitochondrial ancestry of the hydrogenosomes of Nyctotherus ovalis, Mol. Biol. Evol., 2000, vol. 17, pp. 202–206.CrossRefPubMedGoogle Scholar
  67. van Hoek, A.H.A.M., van Alen, T.A., Sprakel, V.S.A., Leunissen, J.A.M., Brigge, T., Vogels, G.D., and Hackstein, J.H.P., Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates, Mol. Biol. Evol., 2000, vol. 17, pp. 251–258.CrossRefPubMedGoogle Scholar
  68. Vasquez, A., Forsgren, E., Fries, I., Paxton, R.J., Flaberg, E., Szekely, L., and Olofsson, T.C., Symbionts as major modulators of insect health: lactic acid bacteria and honeybees, PLoS One, 2012, vol. 7, no. 3. e33188. doi 10.1371/journal.pone.0033188CrossRefPubMedPubMedCentralGoogle Scholar
  69. Viñuelas, J., Febvay, G., Duport, G., Colella, S., Fayard, J.-M., Charles, H., Rahbé, Y., and Calevro, F., Multimodal dynamic response of the Buchnera aphidicola pLeu plasmid to variations in leucine demand of its host, the pea aphid Acyrthosiphon pisum, Mol. Microbiol., 2011, vol. 81, pp. 1271–1285.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Wernegreen, J.J. and Moran, N.A., Evidence for genetic drift in endosymbionts (Buchnera): analyses of proteincoding genes, Mol. Biol. Evol., 1999, vol. 16, pp. 83–97.CrossRefPubMedGoogle Scholar
  71. Woolfit, M., Iturbe-Ormaetxe, I., McGraw, E.A., and O’Neill, S.L., An ancient horizontal gene transfer between mosquito and the endosymbiotic bacterium Wolbachia pipientis, Mol. Biol. Evol., 2009, vol. 26, pp. 367–374.CrossRefPubMedGoogle Scholar
  72. Zakharov, I.A., Intracellular symbionts as a factor in insect evolution, Usp. Sovr. Biol., 2014, vol. 134, no. 5, pp. 435–446.Google Scholar
  73. Zilber-Rosenberg, I. and Rosenberg, E., Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution, FEMS Microbiol. Rev., 2008, vol. 32, pp. 723–735.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.All-Russia Research Institute for Agricultural Microbiology, Pushkin-8St.-PetersburgRussia

Personalised recommendations