Microbiology

, Volume 87, Issue 2, pp 222–228 | Cite as

Phenol Oxidase Activity of Azospirillum brasilense Sp245 Mutants with Modified Motility and Azospirillum brasilense Sp7 Phase Variants with Different Plasmid Composition

  • E. G. Ponomareva
  • M. A. Kupryashina
  • A. V. Shelud’ko
  • L. P. Petrova
  • E. P. Vetchinkina
  • E. I. Katsy
  • V. E. Nikitina
Experimental Articles
  • 19 Downloads

Abstract

Herein, we reveal the alteration in phenol oxidase enzymes complex production from Azospirillum brasilense Sp245 omegon mutants with polar and lateral flagella dysfunction and from A. brasilense Sp7 phase variants with different plasmid composition. The enzymatic activities for various laccases, tyrosinases, Mnperoxidases, and lignin peroxidases as well as the isomorphic composition of intracellular laccases and tyrosinases were estimated for the studied variants and the parent strains. It was noted that various genetic events correlating with phenotypic heterogeneity in A. brasilense populations affect their phenol oxidase activity level.

Keywords

Azospirillum plasmid rearrangements omegon mutants phenol oxidase activity laccase tyrosinase Mn-peroxidase lignin peroxidase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradford, M.M., A rapid and sensitive method for the quantitation of microorganisms qualities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.CrossRefPubMedGoogle Scholar
  2. Bugg, T.D.H., Ahmad, M., Hardiman, E.M., and Singh, R., The emerging role for bacteria in lignin degradation and bio-product formation, Curr. Opin. Biotech., 2011, vol. 22, pp. 394–400.CrossRefPubMedGoogle Scholar
  3. Claus, H. and Decker, H., Bacterial tyrosinases, Syst. Appl. Microbiol., 2006, vol. 29, pp. 3–14.CrossRefPubMedGoogle Scholar
  4. Diamantidis, G., Effosse, A., Potier, P., and Bally, R., Purification and characterization of the first bacterial lac-case in the rhizospheric bacterium Azospirillum lipoferum, Soil Biol. Biochem., 2000, vol. 32, pp. 919–927.CrossRefGoogle Scholar
  5. Dutta, S. and Podile, A.R., Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone, Crit. Rev. Microbiol., 2010, vol. 36, pp. 232–244.CrossRefPubMedGoogle Scholar
  6. Edens, W.A., Going, T.Q., Dooley, D., and Henson, A.M., Characterization of a secreted laccase of Gaeumannomyces graminis var. tritici, Appl. Environ. Microbiol., 1999, vol. 65, pp. 3071–3074.PubMedPubMedCentralGoogle Scholar
  7. Faure, D., Bouillant, M.L., and Bally, R., Isolation of Azospirillum lipoferum 4T Tn5 mutants affected in melanization and laccase activity, Appl. Environ. Microbiol., 1994, vol. 60, pp. 3413–3415.PubMedPubMedCentralGoogle Scholar
  8. Givaudan, A., Effosse, A., Faure, D., Potier, P., Bouillant,M.-L., and Bally, R., Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: evidence for laccase activity in non-motile strains of Azospirillum lipoferum, FEMS Microbiol. Lett., 1993, vol. 108, pp. 205–210.Google Scholar
  9. Halaouli, S., Asther, M., Sigoillot, J.-C., Hamdi, M., and Lomascolo, A., Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications, J. Appl. Microbiol., 2006, vol. 100, pp. 219–232.CrossRefPubMedGoogle Scholar
  10. Horowitz, N.H., Gling, M., and Horn, G., Tyrosinase (Neurospora crassa), Methods Enzymol., 1970, vol. 17, pp. 615–620.CrossRefGoogle Scholar
  11. Katsy, E.I. and Petrova, L.P., Genome rearrangements in Azospirillum brasilense Sp7 with the involvement of the plasmid pRhico and the prophage ΦAb-Cd, Russ. J. Genet., 2015, vol. 51, no. 12, pp. 1165–1171.CrossRefGoogle Scholar
  12. Katsy, E.I., Plasmid plasticity in the plant-associated bacteria of the genus Azospirillum, in Bacteria in Agrobiology: Plant Growth Responses, Maheshwari, D.K., Ed., Berlin: Springer, 2011, pp. 139–157.CrossRefGoogle Scholar
  13. Kovtunov, E.A., Shelud’ko, A.V., Chernyshova, M.P., Petrova, L.P., and Katsy, E.I., Mutants of bacterium Azospirillum brasilense Sp245 with Omegon insertion in mmsB or fabG genes of lipid metabolism are defective in motility and flagellation, Russ. J. Genet., 2013, vol. 49, no. 11, pp. 1107–1111.CrossRefGoogle Scholar
  14. Kumar, R., Bhatia, R., Kukreja, K., Behl, R.K., Dudeja, S.S., and Narula, N., Establishment of Azotobacter on plant roots: chemotactic response, development and analysis of root exudates of cotton (Gossypium hirsutum L.) and wheat (Triticum aestivum L.), J. Basic Microbiol., 2007, vol. 47, pp. 436–439.CrossRefPubMedGoogle Scholar
  15. Kupryashina, M.A., Petrov, S.V., Ponomareva, E.G., and Nikitina, V.E., Ligninolytic activity of bacteria of the genera Azospirillum and Niveispirillum, Microbiology (Moscow), 2015, vol. 84, no. 6, pp. 791–795.CrossRefGoogle Scholar
  16. Laemmly, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, pp. 680–685.CrossRefGoogle Scholar
  17. Narula, N., Kothe, E., Kumar, R., and Behl, R., Role of root exudates in plant–microbe interactions, J. Appl. Bot. Food Qual., 2009, vol. 82, pp. 122–130.Google Scholar
  18. Nikitina, V.E., Vetchinkina, E.P., Ponomareva, E.G., and Gogoleva, Yu.V., Phenol oxidase activity in bacteria of the genus Azospirillum, Microbiology (Moscow), 2010, vol. 79, no. 3, pp. 327–333.CrossRefGoogle Scholar
  19. Orth, A.B., Royse, D.J., and Tien, M., Ubiquity of lignindegrading peroxidases among various wood-degrading fungi, Appl. Environ. Microbiol., 1993, vol. 59, pp. 4017–4023.PubMedPubMedCentralGoogle Scholar
  20. Paszczynski, A., Crawford, R., and Huynh, V.B., Manganese peroxidase of Phanerochaete chrysosporium: purification, Methods Enzymol., 1988, vol. 161, pp. 264–270.CrossRefGoogle Scholar
  21. Petrova, L.P., Borisov, I.V., and Katsy, E.I., Plasmid rearrangements in Azospirillum brasilense, Microbiology (Moscow), 2005, vol. 74, no. 4, pp. 495–497.CrossRefGoogle Scholar
  22. Petrova, L.P., Shelud’ko, A.V., and Katsy, E.I., Plasmid rearrangements and alterations in Azospirillum brasilense biofilm formation, Microbiology (Moscow), 2010, vol. 79, no. 1, pp. 121–124.CrossRefGoogle Scholar
  23. Rabinovich, M.L., Bolobova, A.V., and Vasilchenko, L.G., Fungal decomposition of natural aromatic structures and xenobiotics: a review, Appl. Biochem. Microbiol., 2004, vol. 40, pp. 1–17.CrossRefGoogle Scholar
  24. Saikia, S.P., Bora, D., Goswami, A., Mudoi, K.D., and Gogoi, A., A review on the role of Azospirillum in the yield improvement of non leguminous crops, African J. Microbiol. Res., 2012, vol. 6, pp. 1085–1102.CrossRefGoogle Scholar
  25. Schelud’ko, A.V., Katsy, E.I., Ostudin, N.A., Gringauz, O.K., and Panasenko, V.I., Novel classes of Azospirillum brasilense mutants with defects in the assembly and functioning of polar and lateral flagella, Mol. Genet. Microbiol. Virusol., 1998, no. 4, pp. 33–37.Google Scholar
  26. Schloter, M. and Hartmann, A., Endophytic and surface colonization of wheat roots (Triticum aestivum) by different Azospirillum brasilense strains studied with strain specific monoclonal antibodies, Symbyosis, 1998, vol. 25, pp. 159–179.Google Scholar
  27. Shaw, L.J., Morris, P., and Hooker, J.E., Perception and modification of plant flavonoid signals by rhizosphere microorganisms, Environ. Microbiol., 2006, vol. 8, pp. 1867–1880.CrossRefPubMedGoogle Scholar
  28. Shelud’ko, A.V. and Katsy, E.I., Formation of polar bundles of pili and the behavior of Azospirillum brasilense cells in a semiliquid agar, Microbiology (Moscow), 2001, vol. 70, no. 5, pp. 570–575.CrossRefGoogle Scholar
  29. Shelud’ko, A.V., Shirokov, A.A., Sokolova, M.K., Sokolov, O.I., Petrova, L.P., Matora, L.Yu., and Katsy, E.I., Wheat root colonization by Azospirillum brasilense strains with different motility, Microbiology (Moscow), 2010, vol. 79, no. 5, pp. 688–695.CrossRefGoogle Scholar
  30. Shumilova, E.M., Shelud’ko, A.V., Filip’echeva, Yu.A., Evstigneeva, S.S., Ponomareva, E.G., Petrova, L.P., and Katsy, E.I., Changes in cell surface properties and biofilm formation efficiency in Azospirillum brasilense Sp245 mutants in the putative genes of lipid metabolism mmsB1 and fabG1, Microbiology (Moscow), 2016, vol. 85, no. 2, pp. 172–179.CrossRefGoogle Scholar
  31. Sinsabaugh, R.L., Phenol oxidase, peroxidase and organic matter dynamics of soil, Soil Biol. Biochem., 2010, vol. 42, pp. 391–404.CrossRefGoogle Scholar
  32. Somers, E., Ptacek, D., Gysegom, P., Srinivasan, M., and Vanderleyden, J., Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis, Appl. Environ. Microbiol., 2005, vol. 71, pp. 1803–1810.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Vanbleu, E., Marchal, K., Lambrecht, M., Mathys, J., and Vanderleyden, J., Annotation of the pRhico plasmid of Azospirillum brasilense reveals its role in determining the outer surface composition, FEMS Microbiol. Lett., 2004, vol. 232, pp. 165–172.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. G. Ponomareva
    • 1
  • M. A. Kupryashina
    • 1
  • A. V. Shelud’ko
    • 1
  • L. P. Petrova
    • 1
  • E. P. Vetchinkina
    • 1
  • E. I. Katsy
    • 1
  • V. E. Nikitina
    • 1
  1. 1.Institute of Biochemistry and Physiology of Plants and MicroorganismsRussian Academy of SciencesSaratovRussia

Personalised recommendations