, Volume 87, Issue 2, pp 272–281 | Cite as

Bacterial Diversity and Functional Activity of Microbial Communities in Hot Springs of the Baikal Rift Zone

  • E. V. LavrentyevaEmail author
  • A. A. Radnagurueva
  • D. D. Barkhutova
  • N. L. Belkova
  • S. V. Zaitseva
  • Z. B. Namsaraev
  • V. M. Gorlenko
  • B. B. Namsaraev
Experimental Articles


In this study the bacterial diversity of thermophilic microbial mats (40 to 65°C) in three alkaline hot springs of the Baikal Rift Zone (BRZ) was determined through pyrosequencing of 16S rRNA gene libraries. Significant diversity of bacterial species was found in the biomats of the hot springs with total number of detected phylotypes of 607. The highest share of the microbial community was represented by the phyla Chloroflexi (Seya Spring, 76.4%), Deinococcus-Thermus (Alla Spring, 45.1%), Nitrospira (Alla Spring, 36.1%), Cyanobacteria (Tsenkher Spring, 33.1%), and Proteobacteria (Tsenkher Spring, 22.6%), but their ratio varied significantly in different springs. A comparison of the biodiversity and composition of microbial communities between hot springs showed a decrease in biodiversity with increasing temperature. A large number of sequences showed a low degree of similarity with cultivated representatives in public databases. Microbial communities showed intensive rates of production and destruction of organic compounds, as revealed by the quantitative assessment of their functional activity.


microbial community bacterial diversity pyrosequencing functional activity hot springs Baikal Rift Zone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Badhai, J., Ghosh, T.S., and Das, S.K., Taxonomic and functional characteristics of microbial communities and their correlation with physicochemical properties of four geothermal springs in Odisha, India, Front. Microbiol., 2015, vol. 6, p. 1166. doi 10.3389/fmicb.2015.01166Google Scholar
  2. Bolhuis, H., Cretoiu, M.S., and Stal, L.J., Molecular ecology of microbial mats, FEMS Microbiol. Ecol., 2014, vol. 90, pp. 335–350.PubMedGoogle Scholar
  3. Bonch-Osmolovskaya, E.A., Thermophilic microorganisms: a general overview, Proc. Winogradsky Inst. Microbiol., Thermophilic microorganisms, Galchenko, V.F., Ed., Moscow: MAKS, 2011, pp. 5–14.Google Scholar
  4. Bonch-Osmolovskaya, E.A., Miroshnichenko, M.L., Slobodkin, A.I., Sokolova, T.G., Karpov, G.A., Kostrikina, N.A., Zavarzina, D.G., Prokofeva, M.I., Rusanov, I.I., and Pimenov, N.V., Biodiversity of anaerobic lithotrophic prokaryotes in terrestrial hot springs of Kamchatka, Microbiology (Moscow), 1999, vol. 68, pp. 343–351.Google Scholar
  5. Boomer, S.M., Noll, K.L., Geesey, G.G., and Dutton, B.E., Formation of multilayered photosynthetic biofilms in an alkaline thermal spring in Yellowstone National Park, Wyoming, Appl. Environ. Microbiol., 2009, vol. 75, pp. 2464–2475.CrossRefPubMedGoogle Scholar
  6. Chun, J., Kim, K.Y., Lee, J.-H., and Choi, Y., The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX Titanium pyrosequencer, BMC Microbiol., 2010, vol. 10, article 101.Google Scholar
  7. Cole, J.K., Peacock, J.P., Dodsworth, J.A., Williams, A.J., Thompson, D.B., Dong, H., Wu, G., and Hedlund, B.P., Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities, ISME J., 2013, vol. 7, pp. 718–729.CrossRefPubMedGoogle Scholar
  8. Coman, C., Drugă, B., Hegedus, A., Sicora, C., and Dragoş, N., Archaeal and bacterial diversity in two hot spring microbial mats from a geothermal region in Romania, Extremophiles, 2013, vol. 17, pp. 523–534.CrossRefPubMedGoogle Scholar
  9. Costa, K.C., Navarro, J.B., Shock, E.L., Zhang, C.L., Soukup, D., and Hedlund, B.P., Microbiology and geochemistry of great boiling and mud hot springs in the United States Great Basin, Extremophiles, 2009, vol. 13, pp. 447–459.CrossRefPubMedGoogle Scholar
  10. De Leon, K.B., Gerlach, R., Peyton, B.M., and Fields, M.W., Archael and bacterial communities in three alkaline hot springs in heart lake Geyser Basin, Yellowstone National Park, Front. Microbiol., 2013, vol. 4, pp. 1–10.Google Scholar
  11. Everroad, R.C., Otaki, H., Matsuura, K., and Haruta S., Diversification of bacterial community composition along a temperature gradient at a thermal spring, Microbes Environ., 2012, vol. 27, pp. 374–381.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gorlenko, V.M., Bonch-Osmolovskaya, E.A., Kompantseva, E.I., and Starynin, D.A., Production of organic matter in microbial mats of the Thermophilny Spring in the Uzon Caldera in Kamchatka, Microbiology (Moscow), 1987, vol. 56, pp. 692–697.Google Scholar
  13. Gumerov, V.M., Mardanov, A.V., Beletsky, A.V., Bonch-Osmolovskaya, E.A., and Ravin, N.V., Molecular analysis of microbial diversity in the Zavarzin Spring, Uzon Caldera, Kamchatka, Microbiology (Moscow), 2011, vol. 80, pp. 244–251.CrossRefGoogle Scholar
  14. Hedlund, B.P., Cole, J.K., Williams, A.J., Hou, W., Zhou, E., Li, W., and Dong, H., A review of the microbiology of the Rehai geothermal field in Tengchong, Yunnan Province, China, Geosci. Frontiers, 2012, vol. 3, no. 3, pp. 273–288.CrossRefGoogle Scholar
  15. Hou, W., Wang, S., Dong, H., Jiang, H., Briggs, B.R., Peacock, J.P., Huang, Q., Huang, L., Wu, G., Zhi, X., Li, W., Dodsworth, J.A., Hedlund, B.P., Zhang, C., Hartnett, H.E., Dijkstra, P., and Hungate, B.A., A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing, PLoS One, 2013, vol. 8, no. 1. p. e53350.Google Scholar
  16. Huang, Q., Dong, C.Z., Dong, R.M., Jiang, H., Wang, S., Wang, G., Fang, B., Ding, X., Niu, L., Li, X., Zhang, C., and Dong, H., Archaeal and bacterial diversity in hot springs on the Tibetan Plateau, China, Extremophiles, 2011, vol. 15, pp. 549–563.CrossRefGoogle Scholar
  17. Ionescu, D., Hindiyeh, M., Malkawi, H., and Oren, A., Biogeography of thermophilic cyanobacteria: insights from the Zerka Ma’in hot springs (Jordan), FEMS Microbiol. Ecol., 2010, vol. 72, pp. 103–113.CrossRefPubMedGoogle Scholar
  18. Kanokratana, P., Chanapan, S., Pootanakit, K., and Eurwilaichitr, L., Diversity and abundance of Bacteria and Archaea in the Bor Khlueng hot spring in Thailand, J. Bas. Microbiol., 2004, vol. 44, pp. 430–444.CrossRefGoogle Scholar
  19. Klatt, C.G., Inskeep, W.P., Herrgard, M.J., Jay, Z.J., Rusch, D.B., Tringe, S.G., Parenteau, M.N., Ward, D.M., Boomer, S.M., Bryant, D.A., and Miller, S.R., Community structure and function of high-temperature chlorophototrophic microbial mats inhabiting diverse geothermal environments, Front. Microbiol., 2013, vol. 4, p. 106.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Klatt, C.G., Wood, J.M., Rusch, D.B., Bateson, M.M., Hamamura, N., Heidelberg, J.F., Grossman, A.R., Bhaya, D., Cohan, F.M., Kühl, M., Bryant, D.A., and Ward, D.M., Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential, ISME J., 2011, vol. 5, pp. 1262–1278.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kublanov, I.V., Perevalova, A.A., Slobodkina, G.B., Lebedinsky, A.V., Bidzhieva, S.K., Kolganova, T.V., Kaliberda, E.N., Rumsh, L.D., Haertlé, T., and Bonch-Osmolovskaya, E.A., Biodiversity of thermophilic prokaryotes with hydrolytic activities in hot springs of Uzon Caldera, Kamchatka (Russia), Appl. Environ. Microbiol., 2009, vol. 75, pp. 286–291.CrossRefPubMedGoogle Scholar
  22. Lau, C.Y., Aitchison, J.C., and Pointing, S.B., Bacterial community composition in thermophilic microbial mats from five hot springs in central Tibet, Extremophiles, 2009, vol. 13, pp. 139–149.CrossRefPubMedGoogle Scholar
  23. Lin, W., Christian, J., Schüler, D., and Pan, Y., Metagenomic analysis reveals unexpected subgenomic diversity of magnetotactic bacteria within the phylum Nitrospirae, Appl. Environ. Microbiol., 2011, vol. 77, no. 1, pp. 323–326.CrossRefPubMedGoogle Scholar
  24. Loginova, L.G., Egorova, L.A., Golovacheva, R.S., and Seregina L.M., Thermus ruber sp. nov., nom. rev., Int. J. Sys. Bacteriol., 1984, vol. 344, pp. 498–499.CrossRefGoogle Scholar
  25. Mackenzie, R., Pedrós-Alió, C., and Díez, B., Bacterial composition of microbial mats in hot springs in Northern Patagonia: variations with seasons and temperature, Extremophiles, 2013, vol. 17, pp. 123–136.CrossRefPubMedGoogle Scholar
  26. Madigan, M.T., Bacterial habitats of extremophiles, in Journey to Diverse Microbial Worlds, vol. 2, Seckbach, J., Ed., Boston: Kluwer Academic, 2000, pp. 61–72.CrossRefGoogle Scholar
  27. Meyer-Dombard, D.R. and Amend, J.P., Geochemistry and microbial ecology in alkaline hot springs of Ambitle Island, Papua New Guinea, Extremophiles, 2014, vol. 18, no. 4, pp. 763–778.PubMedGoogle Scholar
  28. Meyer-Dombard, D.R., Shock, E.L., and Amend, J.P., Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA, Geobiology, 2005, vol. 3, pp. 211–227.CrossRefGoogle Scholar
  29. Miller, S.R., Strong, A.L., Jones, K.L., and Ungerer, M.C., Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park, Appl. Environ. Microbiol., 2009, vol. 75, pp. 4565–4572.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Nakagawa, T. and Fukui, M., Phylogenetic characterization of microbial mats and streamers from a Japanese alkaline hot spring with a thermal gradient, J. Gen. Appl. Microbiol., 2002, vol. 48, pp. 211–222.CrossRefPubMedGoogle Scholar
  31. Namsaraev, B.B., Gorlenko, V.M., Namsaraev, Z.B., Barkhutova, D.D., Kozyreva, L.P., Dagurova, O.P., and Tatarinov, A.V., Evolutionary aspects of geochemical activity of microbial mats in lakes and hydrotherms of Baikal Rift Zone, in Biosphere Origin and Evolution, Dobretsov, N., Kolchanov, N., Rozanov, A., and Zavarzin, G., Eds., New York: 2008, pp. 189–202.CrossRefGoogle Scholar
  32. Pimenov, N.V. and Bonch-Osmolovskaya, E.A., In situ activity studies in thermal environments, Methods Microbiol., 2006, vol. 35, pp. 29–54.CrossRefGoogle Scholar
  33. Purcell, D., Sompong, U., Lau, C.Y., Barraclough, T.G., Peerapornpisal, Y., and Pointing, S.B., The effects of temperature, pH and sulphide on the community structure of hyperthermophilic streamers in hot springs of northern Thailand, FEMS Microbiol. Ecol., 2007, vol. 60, no. 3, pp. 456–466.CrossRefPubMedGoogle Scholar
  34. Revsbech, N.P. and Ward, D.M., Microelectrode studies of interstitial water chemistry and photosynthetic activity in a hot spring microbial mat, Appl. Environ. Microbiol., 1984, vol. 48, pp. 270–275.PubMedPubMedCentralGoogle Scholar
  35. Sharp, C.E., Brady, A.L., Sharp, G.H., Grasby, S.E., Stott, M.B., and Dunfield, P.F., Humboldt’s spa: microbial diversity is controlled by temperature in geothermal environments, ISME J., 2014, vol. 8, pp. 1166–1174.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Song, Z.Q., Wang, F.P., Zhi, X.Y., Chen, J.Q., Zhou, E.M., Liang, F., Tang, S.K., Jiang, H.C., Zhang, C.L., Dong, H., and Li, W.J., Bacterial and archaeal diversities in Yunnan and Tibetan hot springs, China, Environ. Microbiol., 2013, vol. 15, no. 4, pp. 1160–1175.CrossRefGoogle Scholar
  37. Tobler, D.J. and Benning, L.G., Bacterial diversity in five Icelandic geothermal waters: temperature and sinter growth rate effects, Extremophiles, 2011, vol. 15, pp. 473–485.CrossRefPubMedGoogle Scholar
  38. Tomova, I., Stoilova-Disheva, M., Lyutskanova, D., Pascual, J., Petrov, P., and Kambourova, M., Phylogenetic analysis of the bacterial community in a geothermal spring, Rupi Basin, Bulgaria, World J. Microbiol. Biotechnol., 2010, vol. 26, pp. 2019–2028.CrossRefGoogle Scholar
  39. Vick, T.J., Dodsworth, J.A., Costa, K.C., Shock, E.L., and Hedlund, B.P., Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley Caldera, Geobiology, 2010, vol. 8, pp. 140–154.CrossRefPubMedGoogle Scholar
  40. Wang, S., Hou, W., Dong, H., Jiang, H., Huang, L., Wu, G., Zhang, C., Song, Z., Zhang, Y., Ren, H., Zhang, J., and Zhang, L., Control of temperature on microbial community structure in hot springs of the Tibetan Plateau, PLoS One, 2013, vol. 8, no. 5, p. e62901.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ward, D.M., Ferris, M.J., Nold, S.C., and Bateson, M.M., A natural view of microbial biodiversity within hot spring cyanobacterial mat communities, Microbiol. Mol. Biol. Rev., 1998, vol. 62, pp. 1353–1370.PubMedPubMedCentralGoogle Scholar
  42. Yamada, T., Imachi, H., Ohashi, A., Harada, H., Hanada, S., Kamagata, Y., and Sekiguchi, Y., Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia, Int. J. Syst. Evol. Microbiol., 2007, vol. 57, no. 10, pp. 2299–2306.CrossRefPubMedGoogle Scholar
  43. Zavarzin, G.A., Lectures on Natural History Microbiology, Moscow: Nauka, 2003.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. V. Lavrentyeva
    • 1
    • 2
    Email author
  • A. A. Radnagurueva
    • 1
  • D. D. Barkhutova
    • 1
  • N. L. Belkova
    • 3
  • S. V. Zaitseva
    • 1
  • Z. B. Namsaraev
    • 4
  • V. M. Gorlenko
    • 5
  • B. B. Namsaraev
    • 1
  1. 1.Institute of General and Experimental Biology, Siberian BranchRussian Academy of SciencesUlan-UdeRussia
  2. 2.Buryat State UniversityUlan-UdeRussia
  3. 3.Limnological Institute, Siberian BranchRussian Academy of SciencesIrkutskRussia
  4. 4.National Research Centre “Kurchatov Institute”MoscowRussia
  5. 5.The Federal Research Centre “Fundamentals of Biotechnology”Russian Academy of SciencesMoscowRussia

Personalised recommendations