Albers, S., van de Vossenberg, J.L.C.M., Driessen, A.J.M., and Konings, W.N., Bioenergetics and solute uptake under extreme conditions, Extremophiles, 2001, vol. 5, pp. 285–294.
CAS
PubMed
Google Scholar
AOAC, Official Methods of Analysis, 13th ed., Washington: Association of Official Analytical Chemists, 1980.
Google Scholar
Avery, S., Stratford, M., and Van West, P., Stress in Yeasts and Filamentous Fungi, Academic, 2007.
Google Scholar
Baatout, S., Leys, N., Hendrickx, L., Dams, A., and Mergeay, M., Physiological changes induced in bacteria following pH stress as a model for space research, Acta Astronaut., 2007, vol. 60, no. 4, pp. 451–459.
CAS
Article
Google Scholar
Baker-Austin, C. and Dopson, M., Life in acid: pH homeostasis in acidophiles, Trends Microbiol., 2007, vol. 15, no. 4, pp. 165–171.
CAS
Article
PubMed
Google Scholar
Bayram, Ö. and Braus, G.H., Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins, FEMS Microbiol. Rev., 2012, vol. 36, no. 1, pp. 1–24.
CAS
Article
PubMed
Google Scholar
Beales, N., Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review, Compr. Rev. Food Sci. Food Saf., 2004, vol. 3, no. 1, pp. 1–20.
CAS
Article
Google Scholar
Beney, L. and Gervais, P., Influence of the fluidity of the membrane on the response of microorganisms to environmental stresses, Appl. Microbiol. Biotechnol., 2001, vol. 57, no. 1, pp. 34–42.
CAS
PubMed
Google Scholar
Bhosale, P., Environmental and cultural stimulants in the production of carotenoids from microorganisms, Appl. Microbiol. Biotechnol., 2004, vol. 63, no. 4, pp. 351–361.
CAS
Article
PubMed
Google Scholar
Bignell, E., The molecular basis of pH sensing, signaling, and homeostasis in fungi, Adv. Appl. Microbiol., 2012, vol. 79, p. 1.
CAS
Article
PubMed
Google Scholar
Boor, K.J., Bacterial stress responses: what doesn’t kill them can make them stronger, PLoS Biol., 2006, vol. 4, no.1, p. e23.
Article
PubMed
PubMed Central
Google Scholar
Booth, I.R., Cash, P., and O’Byrne, C., Sensing and adapting to acid stress, Antonie van Leeuwenhoek, 2002, vol. 81, no. 1, pp. 33–42.
CAS
Article
Google Scholar
Britton, G., Overview of carotenoid biosynthesis, Carotenoids, 1998, vol. 3, pp. 13–147.
Google Scholar
Claret, S., Gatti, X., Doignon, F., Thoraval, D., and Crouzet, M., The Rgd1p Rho GTPase-activating protein and the Mid2p cell wall sensor are required at low pH for protein kinase C pathway activation and cell survival in Saccharomyces cerevisiae, Eukaryotic Cell, 2005, vol. 4, no. 8, pp. 1375–1386.
CAS
Article
PubMed
PubMed Central
Google Scholar
Daum, G., Lees, N.D., Bard, M., and Dickson, R., Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae, Yeast, 1998, vol. 14, no. 16, pp. 1471–1510.
CAS
Article
PubMed
Google Scholar
Echavarri-Erasun, C. and Johnson, E.A., Fungal carotenoids, Appl. Mycol. Biotechnol., 2002, vol. 2, pp. 45–85.
CAS
Article
Google Scholar
Fritz, G., Koller, C., Burdack, K., Tetsch, L., Haneburger, I., Jung, K., and Gerland, U., Induction kinetics of a conditional pH stress response system in Escherichia coli, J. Mol. Biol., 2009, vol. 393, no. 2, pp. 272–286.
CAS
Article
PubMed
Google Scholar
Galhardo, R.S., Hastings, P, and Rosenberg, S.M., Mutation as a stress response and the regulation of evolvability, Crit. Rev Biochem. Mol., 2007, vol. 42, no. 5, pp. 399–435.
CAS
Article
Google Scholar
Gao, H. and Tan, T., Fed-batch fermentation for ergosterol production, Process Biochem., 2003, vol. 39, no. 3, pp. 345–350.
CAS
Article
Google Scholar
Gruszecki, W.I. and Strzalka, K., Carotenoids as modulators of lipid membrane physical properties, Biochim. Biophys. Acta, 2005, vol. 1740, no. 2, pp. 108–115.
CAS
Article
PubMed
Google Scholar
Haines, T.H., Do sterols reduce proton and sodium leaks through lipid bilayers?, Prog. Lipid Res., 2001, vol. 40, no. 4, pp. 299–324.
CAS
Article
PubMed
Google Scholar
Hesse, S.J., Ruijter, G.J., Dijkema, C., and Visser, J., Intracellular pH homeostasis in the filamentous fungus Aspergillus niger, Eur. J. Biochem., 2002, vol. 269, no. 14, pp. 3485–3494.
CAS
Article
PubMed
Google Scholar
Hincha, D.K. and Hagemann, M., Stabilization of model membranes during drying by compatible solutes involved in the stress tolerance of plants and microorganisms, Biochem. J., 2004, vol. 383, no. 2, pp. 277–283.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kumar, A., Srikanta, A.H., Muthukumar, S., Sukumaran, U.K., and Govindaswamy, V., Antioxidant and lipid peroxidation activities in rats fed with Aspergillus carbonarius carotenoid, Food Chem. Toxicol., 2011, vol. 49, no. 12, pp. 3098–3103.
CAS
Article
PubMed
Google Scholar
Kumaresan, N., Sanjay, K.R., Venkatesh, K.S., Ravi-Kumar, K., Vijayalakshmi, G., and Umesh-Kumar, S., Partially saturated canthaxanthin purified from Aspergillus carbonarius induces apoptosis in prostate cancer cell line, Appl. Microbiol. Biotechnol., 2008, vol. 80, no. 3, pp. 467–473.
CAS
Article
PubMed
Google Scholar
Mantzouridou, F., Naziri, E., and Tsimidou, M.Z., Squalene versus ergosterol formation using Saccharomyces cerevisiae: combined effect of oxygen supply, inoculum size, and fermentation time on yield and selectivity of the bioprocess, J. Agric. Food Chem., 2009, vol. 57, no. 14, pp. 6189–6198.
CAS
Article
PubMed
Google Scholar
Mysyakina, I. and Funtikova, N., The role of sterols in morphogenetic processes and dimorphism in fungi, Microbiology (Moscow), 2007, vol. 76, no. 1, pp. 1–13.
CAS
Article
Google Scholar
Nikolaev, Y.A., Mulyukin, A., and Stepanenko, I.Y., Autoregulation of stress response in microorganisms, Microbiology (Moscow), 2006, vol. 75, no. 4, pp. 420–426.
CAS
Article
Google Scholar
Scherlach, K. and Hertweck, C., Triggering cryptic natural product biosynthesis in microorganisms, Org. Biomol. Chem., 2009, vol. 7, no. 9, pp. 1753–1760.
CAS
Article
PubMed
Google Scholar
Selvig, K. and Alspaugh, J.A., pH response pathways in fungi: adapting to host-derived and environmental signals, Mycobiology, 2011, vol. 39, no. 4, pp. 249–256.
CAS
Article
PubMed
PubMed Central
Google Scholar
Shimada, H., Kondo, K., Fraser, P.D., Miura, Y., Saito, T., and Misawa, N., Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway, Appl. Environ. Microbiol., 1998, vol. 64, no. 7, pp. 2676–2680.
CAS
PubMed
PubMed Central
Google Scholar
Shrestha, B., Han, S.K., Yoon, K.S., and Sung, J.M., Morphological characteristics of conidiogenesis in Cordyceps militaris, Mycobiology, 2005, vol. 33, no. 2, pp. 69–76.
Article
PubMed
PubMed Central
Google Scholar
Socaciu, C., Bojarski, P., Aberle, L., and Diehl, H.A., Different ways to insert carotenoids into liposomes affect structure and dynamics of the bilayer differently., Biophys. Chem., 2002, vol. 99, no. 1, pp. 1–15.
CAS
Article
PubMed
Google Scholar
Wisniewska, A. and Subczynski, W.K., Effects of polar carotenoids on the shape of the hydrophobic barrier of phospholipid bilayers, Biochim. Biophys. Acta, 1998, vol. 1368, no. 2, pp. 235–246.
CAS
Article
PubMed
Google Scholar