Skip to main content

Role of Partially Saturated Canthaxanthin and Ergosterol in the Survival of Aspergillus carbonarius Mutant at Extreme Acidic Condition

Abstract

Unlike the wild type, the mutant Aspergillus carbonarius synthesized a yellow pigment, partially saturated canthaxanthin (PSC) when the growth medium acidified to low pH. Since the pigment found pharmaceutical applications, the possible mechanism involved in its ability to grow at extreme acidic conditions is described. To understand the mutation in the pathway, specific inhibitors affecting carotenoid biosynthesis were used in the medium and PSC synthesis and cell integrity were studied. Results suggested that the possible occurrence of mutation in the isoprenoid pathway for higher production of carotenoid as well as ergosterol caused the mutant to grow in extremely acidic conditions. The results also suggested that the flow of carbon for sterol biosynthesis and that of carotenoids are dependent. The deposition of carotenoids and ergosterol in the cell membrane causing the cells to maintain pH homeostasis under the acidic growth conditions is of significant importance. In A. carbonarius, understanding the cause of stress induced PSC accumulation is essential for efficient expression and production of the pharmaceutically significant carotenoid and this will further facilitate research into the role of carotenoids in stress tolerance of other filamentous fungi.

This is a preview of subscription content, access via your institution.

References

  • Albers, S., van de Vossenberg, J.L.C.M., Driessen, A.J.M., and Konings, W.N., Bioenergetics and solute uptake under extreme conditions, Extremophiles, 2001, vol. 5, pp. 285–294.

    CAS  PubMed  Google Scholar 

  • AOAC, Official Methods of Analysis, 13th ed., Washington: Association of Official Analytical Chemists, 1980.

    Google Scholar 

  • Avery, S., Stratford, M., and Van West, P., Stress in Yeasts and Filamentous Fungi, Academic, 2007.

    Google Scholar 

  • Baatout, S., Leys, N., Hendrickx, L., Dams, A., and Mergeay, M., Physiological changes induced in bacteria following pH stress as a model for space research, Acta Astronaut., 2007, vol. 60, no. 4, pp. 451–459.

    CAS  Article  Google Scholar 

  • Baker-Austin, C. and Dopson, M., Life in acid: pH homeostasis in acidophiles, Trends Microbiol., 2007, vol. 15, no. 4, pp. 165–171.

    CAS  Article  PubMed  Google Scholar 

  • Bayram, Ö. and Braus, G.H., Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins, FEMS Microbiol. Rev., 2012, vol. 36, no. 1, pp. 1–24.

    CAS  Article  PubMed  Google Scholar 

  • Beales, N., Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review, Compr. Rev. Food Sci. Food Saf., 2004, vol. 3, no. 1, pp. 1–20.

    CAS  Article  Google Scholar 

  • Beney, L. and Gervais, P., Influence of the fluidity of the membrane on the response of microorganisms to environmental stresses, Appl. Microbiol. Biotechnol., 2001, vol. 57, no. 1, pp. 34–42.

    CAS  PubMed  Google Scholar 

  • Bhosale, P., Environmental and cultural stimulants in the production of carotenoids from microorganisms, Appl. Microbiol. Biotechnol., 2004, vol. 63, no. 4, pp. 351–361.

    CAS  Article  PubMed  Google Scholar 

  • Bignell, E., The molecular basis of pH sensing, signaling, and homeostasis in fungi, Adv. Appl. Microbiol., 2012, vol. 79, p. 1.

    CAS  Article  PubMed  Google Scholar 

  • Boor, K.J., Bacterial stress responses: what doesn’t kill them can make them stronger, PLoS Biol., 2006, vol. 4, no.1, p. e23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Booth, I.R., Cash, P., and O’Byrne, C., Sensing and adapting to acid stress, Antonie van Leeuwenhoek, 2002, vol. 81, no. 1, pp. 33–42.

    CAS  Article  Google Scholar 

  • Britton, G., Overview of carotenoid biosynthesis, Carotenoids, 1998, vol. 3, pp. 13–147.

    Google Scholar 

  • Claret, S., Gatti, X., Doignon, F., Thoraval, D., and Crouzet, M., The Rgd1p Rho GTPase-activating protein and the Mid2p cell wall sensor are required at low pH for protein kinase C pathway activation and cell survival in Saccharomyces cerevisiae, Eukaryotic Cell, 2005, vol. 4, no. 8, pp. 1375–1386.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Daum, G., Lees, N.D., Bard, M., and Dickson, R., Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae, Yeast, 1998, vol. 14, no. 16, pp. 1471–1510.

    CAS  Article  PubMed  Google Scholar 

  • Echavarri-Erasun, C. and Johnson, E.A., Fungal carotenoids, Appl. Mycol. Biotechnol., 2002, vol. 2, pp. 45–85.

    CAS  Article  Google Scholar 

  • Fritz, G., Koller, C., Burdack, K., Tetsch, L., Haneburger, I., Jung, K., and Gerland, U., Induction kinetics of a conditional pH stress response system in Escherichia coli, J. Mol. Biol., 2009, vol. 393, no. 2, pp. 272–286.

    CAS  Article  PubMed  Google Scholar 

  • Galhardo, R.S., Hastings, P, and Rosenberg, S.M., Mutation as a stress response and the regulation of evolvability, Crit. Rev Biochem. Mol., 2007, vol. 42, no. 5, pp. 399–435.

    CAS  Article  Google Scholar 

  • Gao, H. and Tan, T., Fed-batch fermentation for ergosterol production, Process Biochem., 2003, vol. 39, no. 3, pp. 345–350.

    CAS  Article  Google Scholar 

  • Gruszecki, W.I. and Strzalka, K., Carotenoids as modulators of lipid membrane physical properties, Biochim. Biophys. Acta, 2005, vol. 1740, no. 2, pp. 108–115.

    CAS  Article  PubMed  Google Scholar 

  • Haines, T.H., Do sterols reduce proton and sodium leaks through lipid bilayers?, Prog. Lipid Res., 2001, vol. 40, no. 4, pp. 299–324.

    CAS  Article  PubMed  Google Scholar 

  • Hesse, S.J., Ruijter, G.J., Dijkema, C., and Visser, J., Intracellular pH homeostasis in the filamentous fungus Aspergillus niger, Eur. J. Biochem., 2002, vol. 269, no. 14, pp. 3485–3494.

    CAS  Article  PubMed  Google Scholar 

  • Hincha, D.K. and Hagemann, M., Stabilization of model membranes during drying by compatible solutes involved in the stress tolerance of plants and microorganisms, Biochem. J., 2004, vol. 383, no. 2, pp. 277–283.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Kumar, A., Srikanta, A.H., Muthukumar, S., Sukumaran, U.K., and Govindaswamy, V., Antioxidant and lipid peroxidation activities in rats fed with Aspergillus carbonarius carotenoid, Food Chem. Toxicol., 2011, vol. 49, no. 12, pp. 3098–3103.

    CAS  Article  PubMed  Google Scholar 

  • Kumaresan, N., Sanjay, K.R., Venkatesh, K.S., Ravi-Kumar, K., Vijayalakshmi, G., and Umesh-Kumar, S., Partially saturated canthaxanthin purified from Aspergillus carbonarius induces apoptosis in prostate cancer cell line, Appl. Microbiol. Biotechnol., 2008, vol. 80, no. 3, pp. 467–473.

    CAS  Article  PubMed  Google Scholar 

  • Mantzouridou, F., Naziri, E., and Tsimidou, M.Z., Squalene versus ergosterol formation using Saccharomyces cerevisiae: combined effect of oxygen supply, inoculum size, and fermentation time on yield and selectivity of the bioprocess, J. Agric. Food Chem., 2009, vol. 57, no. 14, pp. 6189–6198.

    CAS  Article  PubMed  Google Scholar 

  • Mysyakina, I. and Funtikova, N., The role of sterols in morphogenetic processes and dimorphism in fungi, Microbiology (Moscow), 2007, vol. 76, no. 1, pp. 1–13.

    CAS  Article  Google Scholar 

  • Nikolaev, Y.A., Mulyukin, A., and Stepanenko, I.Y., Autoregulation of stress response in microorganisms, Microbiology (Moscow), 2006, vol. 75, no. 4, pp. 420–426.

    CAS  Article  Google Scholar 

  • Scherlach, K. and Hertweck, C., Triggering cryptic natural product biosynthesis in microorganisms, Org. Biomol. Chem., 2009, vol. 7, no. 9, pp. 1753–1760.

    CAS  Article  PubMed  Google Scholar 

  • Selvig, K. and Alspaugh, J.A., pH response pathways in fungi: adapting to host-derived and environmental signals, Mycobiology, 2011, vol. 39, no. 4, pp. 249–256.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Shimada, H., Kondo, K., Fraser, P.D., Miura, Y., Saito, T., and Misawa, N., Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway, Appl. Environ. Microbiol., 1998, vol. 64, no. 7, pp. 2676–2680.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha, B., Han, S.K., Yoon, K.S., and Sung, J.M., Morphological characteristics of conidiogenesis in Cordyceps militaris, Mycobiology, 2005, vol. 33, no. 2, pp. 69–76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Socaciu, C., Bojarski, P., Aberle, L., and Diehl, H.A., Different ways to insert carotenoids into liposomes affect structure and dynamics of the bilayer differently., Biophys. Chem., 2002, vol. 99, no. 1, pp. 1–15.

    CAS  Article  PubMed  Google Scholar 

  • Wisniewska, A. and Subczynski, W.K., Effects of polar carotenoids on the shape of the hydrophobic barrier of phospholipid bilayers, Biochim. Biophys. Acta, 1998, vol. 1368, no. 2, pp. 235–246.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Govindaswamy.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Mathimaran, A., Shrikanta, A.H. et al. Role of Partially Saturated Canthaxanthin and Ergosterol in the Survival of Aspergillus carbonarius Mutant at Extreme Acidic Condition. Microbiology 87, 183–190 (2018). https://doi.org/10.1134/S0026261718020066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261718020066

Keywords

  • acidic stress
  • biosynthesis
  • canthaxanthin
  • carotenoids
  • ergosterol