, Volume 87, Issue 2, pp 200–214 | Cite as

Comparative Analysis of the Biological Activity and Chromatographic Profiles of the Extracts of Beauveria bassiana and B. pseudobassiana Cultures Grown on Different Nutrient Substrates

  • A. O. Berestetskiy
  • A. N. Ivanova
  • M. O. Petrova
  • D. S. Prokof’eva
  • E. A. Stepanycheva
  • A. M. Uspanov
  • G. R. Lednev
Experimental Articles


Soil, enodphytic, and insect-pathogenic micromycetes of the genus Beauveria are widespread in nature and are important producers on mycoinsecticides, enzymes, and pharmacologically usable and toxic compounds. The goal of the work was to determine chemodiagnostic approaches to differentiation of Beauveria cryptic species using the strains B. bassiana BBL and B. pseudobassiana BCu22 by comparing their toxicological properties (insecticidal, antimicrobial, phytotoxic, cytotoxic, and esterase-inhibition activity) and metabolite profiles (TLC and HPLC/DAD patterns) of the extracts from the cultures of these fungi growing on different loose substrates, on solid and liquid media. It was shown that when the strains were cultured in liquid media (SDAY and Adámek medium) and on solid substrates (millet and Czapek agar medium), they could be differentiated by the extract yield and chromatographic profiles, as well as by their insecticidal, antifungal, and cytotoxic activity. Thus, antifungal properties were more pronounced in B. pseudobassiana BCu22 grown in liquid Adámek and SDAY media, while cytotoxic properties were more notable in B. bassiana BBL grown in Adámek medium and on millet. Insecticidal properties of the extracts from these cultures varied depending on the substrate composition. Since the extracts of the studied fungi exhibited a broad spectrum of biological activity, the toxic properties of Beauveria spp. should be considered in the course of assessment of safety of these fungi as bioinsecticides.


Beauveria bassiana Beauveria pseudobassiana extracts toxicology HPLC TLC chemotaxonomy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anke H., Insecticidal and nematicidal metabolites from fungi, in The Mycota, vol. 10, Industrial Applications, Hofrichter, M., Ed., Berlin: Springer, 2010, pp. 151–163.Google Scholar
  2. Begley, C.G. and Waggoner, P., Soft contact lens contamination by Beauveria bassiana, Int. Contact Lens Clinic., 1992, vol. 19, pp. 247–251.CrossRefGoogle Scholar
  3. Berestetskii, A.O., Yuzikhin, O.S., Katkova, A.S., Dobrodumov, A.V., Sivogrivov, D.E., and Kolombet, L.V., Isolation, identification, and characteristics of the phytotoxin produced by the fungus Alternaria cirsinoxia, Appl. Biochem. Microbiol., 2010, vol. 46, pp. 75–79.CrossRefGoogle Scholar
  4. Bills, G.F., Platas, G., Fillola, A., Jiménez, M.R., Collado, J., Vicente, F., Martín, J., González, A., Bur-Zimmermann, J., Tormo, J.R., and Peláez, F., Enhancement of antibiotic and secondary metabolite detection from filamentous fungi by growth on nutritional arrays, J. Appl. Microbiol., 2008, vol. 104, pp. 1644–1658.CrossRefPubMedGoogle Scholar
  5. Bridge, P.D., Abraham, Y.J., Cornish, M.C., Prior, C., and Moore, D., The chemotaxonomy of Beauveria bassiana (Deuteromycotina: Hyphomycetes) isolates from the coffee berry borer Hypothenemus hampei (Coleoptera: Scolytidae), Mycopathologia, 1990, vol. 111, pp. 85–90.CrossRefGoogle Scholar
  6. Ellman, G.L., Courtney, K.D., Andres, V., Jr., and Feather-Stone, R.M., A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem. Pharmacol., 1961, vol. 7, pp. 88–95.Google Scholar
  7. Evidente, A., Berestetskiy, A., Cimmino, A., Tuzi, A., Superchi, S., Melck, D., and Andolfi, A., Papyracillic acid, a phytotoxic 1,6-dioxaspiro[4,4]nonene produced by Ascochyta agropyrina var. nana, a potential mycoherbicide for Elytrigia repens biocontrol, J. Agric. Food Chem., 2009, vol. 57, pp. 11168–11173.CrossRefPubMedGoogle Scholar
  8. Fan, J., Xie, Y., Xue, J., and Liu, R., The effect of Beauveria brongniartii and its secondary metabolites on the detoxification enzymes of the pine caterpillar, Dendrolimus tabulaeformis, J. Insect Sci., 2013, vol. 13, article 44.Google Scholar
  9. Frisvad, J.C. and Thrane, U., Standardized high-performance liquid chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone retention indices and UV-VIS spectra (diode-array detection), J. Chromatography, 1987, vol. 404, pp. 195–214.CrossRefGoogle Scholar
  10. Griffiths, D.A. and Jezequel, S.G., Metabolism of xenobiotics by Beauveria bassiana, Xenobiotica, 1993, vol. 23, pp. 1085–1100.CrossRefPubMedGoogle Scholar
  11. Hamill, R.L., Higgens, C.E., Boaz, M.E., and Gorman, M., The structure of beauvericin, a new depsipeptide antibiotic toxic to Artemia salina, Tetrahedron Lett., 1969, vol. 10, pp. 4255–4258.CrossRefGoogle Scholar
  12. Hewage, R.T., Aree, T., Mahidol, C., Ruchirawat, S., and Kittakoop, P., One strain-many compounds (OSMAC) method for production of polyketides, azaphilones, and an isochromanone using the endophytic fungus Dothideomycete sp., Phytochemistry, 2014, vol. 108, pp. 87–94.CrossRefPubMedGoogle Scholar
  13. Hu, Q., Li, F., and Zhang, Y., Risks of mycotoxins from mycoinsecticides to humans, BioMed Res. Int., 2016. Article ID 3194321, 13 pages. doi 10.1155/2016/3194321Google Scholar
  14. Hyun, S.-H., Lee, S.-Y., Park, S.J., Kim, D.Y., Chun, Y.J., Sung, G.-H., Kim, S.H., and Choi, H.-K., Alteration of media composition and light conditions change morphology, metabolic profile, and beauvericin biosynthesis in Cordyceps bassiana mycelium, J. Microbiol. Biotechnol., 2013, vol. 23, pp. 47–55.CrossRefPubMedGoogle Scholar
  15. Kadlec, Z., Šimek, P., Heydová, A., Jegorov, A., Maťha, V., Landa, Z., and Eyal, J., Chemotaxonomic discrimination among the fungal genera Tolypocladium, Beauveria and Paecilomyces, Biochem. Syst. Ecol., 1994, vol. 22, pp. 803–806.CrossRefGoogle Scholar
  16. Langenfeld, A., Blond, A., Gueye, S., Herson, P., Nay, B., Dupont, J., and Prado, S., Insecticidal cyclodepsipeptides from Beauveria feline, J. Nat. Prod., 2011, vol. 74, pp. 825–830.CrossRefPubMedGoogle Scholar
  17. Lednev, G., Tokarev, Y., Uspanov, A., Malysh, J., Duisembekov, B., Sabitova, M., Levchenko, M., Smagulova, S., Orazova, S., Amanov, S., and Sagitov, A., Molecular criteria for screening of Beauveria strains used for insect pest control, J. Biotechnol., 2014, vol. 185, pp. S63–S64.CrossRefGoogle Scholar
  18. Molnár, I., Gibson, D.M., and Krasnoff, S.B., Secondary metabolites from entomopathogenic Hypocrealean fungi, Nat. Prod. Rep., 2010, vol. 27, pp. 1241–1275.CrossRefPubMedGoogle Scholar
  19. Morais-Urano, R.P., Chagas, A.C.S., and Berlinck, R.G.S., Acaricidal action of destruxins produced by a marine-derived Beauveria felina on the bovine tick Rhipicephalus (Boophilus) microplus, Exper. Parasitol., 2012, vol. 132, pp. 362–366.CrossRefGoogle Scholar
  20. Mugnai, L., Bridge, P.D., and Evans, H.C., A chemotaxonomic evaluation of the genus Beauveria, Mycol. Res., 1989, vol. 92, pp. 199–209.CrossRefGoogle Scholar
  21. Neumann, K., Kehraus, S., Gütschow, M., and König, G.M., Cytotoxic and HLE-inhibitory tetramic acid derivatives from marine-derived fungi, Nat. Prod. Commun., 2009, vol. 4, pp. 347–354.PubMedGoogle Scholar
  22. Quesada-Moraga, E. and Vey, A., Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana, Mycol. Res., 2004, vol. 108, pp. 441–452.CrossRefPubMedGoogle Scholar
  23. Reddy, G.V.P., Tangtrakulwanich, K., Wu, S., Miller, J.H., Ophus, V.L., Prewett, J., and Jaronski, S.T., Evaluation of the effectiveness of entomopathogens for the management of wireworms (Coleoptera: Elateridae) on spring wheat, J. Invertebrate Pathol., 2014, vol. 120, pp. 43–49.CrossRefGoogle Scholar
  24. Sarker, S.D., Latif, Z., and Gray, A.I., Natural product isolation. An overview, in Methods in Biotechnology, vol. 20, Natural Products Isolation, Sarker, S.D., Latif, Z., and Gray, A.I., Eds., Totowa: Humana Press, 2006, pp. 1–25.Google Scholar
  25. Strasser, H., Abendstein, D., Stuppner, H., and Butt, T.M., Monitoring the distribution of secondary metabolites produced by the entomogenous fungus Beauveria brongniartii with particular reference to oosporein, Mycol. Res., 2000, vol. 104, pp. 1227–1233.CrossRefGoogle Scholar
  26. Valencia, J.W., Gaitán Bustamante, A.L., Jiménez, A.V., and Grossi-de-Sá, M.F., Cytotoxic activity of fungal metabolites from the pathogenic fungus Beauveria bassiana: an intraspecific evaluation of beauvericin production, Curr. Microbiol., 2011, vol. 63, pp. 306–312.CrossRefPubMedGoogle Scholar
  27. Vega, F.E., Goettel, M.S., Blackwell, M., Chandler, D., Jackson, M.A., Keller, S., Koike, M., Maniania, N.K., Monzón, A., Ownley, B.H., Pell, J.K., Rangel, D.E.N., and Roy, H.E., Fungal entomopathogens: new insights on their ecology, Fungal Ecol., 2009, vol. 2, pp. 149–159.CrossRefGoogle Scholar
  28. Wang, Q. and Xu, L., Beauvericin, a bioactive compound produced by fungi: a short review, Molecules, 2012, vol. 17, pp. 2367–2377.CrossRefPubMedGoogle Scholar
  29. Westwood, G.S., Huang, S.-W., and Keyhani, N.O., Molecular and immunological characterization of allergens from the entomopathogenic fungus Beauveria bassiana, Clin. Mol. Allergy, 2006, vol. 4. doi 10.1186/1476-7961-4-12Google Scholar
  30. Yang, Z.P. and Dettbarn, W.D., Prevention of tolerance to the organophosphorus anticholinesterase paraoxon with carboxylesterase inhibitors, Biochem. Pharmacol., 1998, vol. 55, pp. 1419–1426.CrossRefPubMedGoogle Scholar
  31. Yoon, C.-S., Yu, K.-W., Bae, S.-H., Song, H.-H., Park, H.-S., and Lee, C., Chemical properties and physiological activities of synnemata of Beauveria bassiana, J. Microbiol. Biotechnol., 2003, vol. 13, pp. 125–133.Google Scholar
  32. Yuan, W., Wang, P., Zhang, Z., and Li, S., Glycosylation of (–)-maackiain by Beauveria bassiana and Cunninghamella echinulata var. elegans, Biocat. Biotransform., 2010, vol. 28, pp. 117–121.CrossRefGoogle Scholar
  33. Zibaee, A., Bandani, A.R., and Tork, M., Effect of the entomopathogenic fungus, Beauveria bassiana, and its secondary metabolite on detoxifying enzyme activities and acetylcholinesterase (AChE) of the Sunn pest, Eurygaster integriceps (Heteroptera: Scutellaridae), Biocontrol Sci. Technol., 2009, vol. 19, pp. 485–498.Google Scholar
  34. Zimmermann, G., Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii, Biocontrol Sci. Technol., 2007, vol. 17, pp. 553–596.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. O. Berestetskiy
    • 1
  • A. N. Ivanova
    • 1
  • M. O. Petrova
    • 1
  • D. S. Prokof’eva
    • 2
  • E. A. Stepanycheva
    • 1
  • A. M. Uspanov
    • 3
  • G. R. Lednev
    • 1
  1. 1.All-Russian Research Institute of Plant ProtectionSt.-PetersburgRussia
  2. 2.Research Institute for Hygiene, Occupational Pathology, and Human EcologySt.-PetersburgRussia
  3. 3.Kazakh Research Institute for Plant Protection and QuarantineAlmatyKazakhstan

Personalised recommendations