Skip to main content
Log in

Structure of microbial communities of peat soils in two bogs in Siberian tundra and forest zones

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The structure and functional activity of microbial complexes of a forest oligo-mesotrophic subshrub- grass-moss bog (OMB, Central Evenkiya) and a subshrub-sedge bog in the polygonal tundra (PB, Lena River Delta Samoylovsky Island) was studied. Soil of the forest bog (OMB) differed from that of the polygonal tundra bog (PB) in higher productivity (Corg, Ntotal, P, and K reserves), higher biomass of aerobic chemoorganotrophs (2.0 to 2.6 times), and twice the level of available organic matter. The contribution of microorganisms to the carbon pool was different, with the share of Cmic in Corg 1.4 to 2.5 times higher in PB compared to OMB. Qualitative composition of the methane cycle microorganisms in PB and OMB soils differed significantly. Methanogenic archaea (Euryarchaeota) in the shrub-sedge PB of tundra were more numerous and diverse than in the oligo-mesotrophic bog (OMB) and belonged to six families (Methanomassiliicoccaceae, Methanoregulaceae, Methanobacteriaceae, Methanomicrobiaceaee, Methanosarcinaceae, and Methanotrichaceae), while members of only four families (Methanosarcinacea, Methanobacteriaceae, Methanotrichaceae, and Methanomassiliicoccaceae) were revealed in OMB. In both bogs, methane-oxidizing bacteria belonged to Alphaproteobacteria (II) and Gammaproteobacteria (I). Methanotroph diversity was higher in OMB than in PB. Microbial communities of PB soils had higher potential activity of methanogenesis and methanotrophy compared to those of OMB. Methanogenic and methanotrophic activities in PB were 20 and 2.3 times higher, respectively, than in OMB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amaral, J.A., Archambault, C., Richards, S.R., and Knowles, R., Denitrification associated with groups I and II methanotrophs in a gradient enrichment system, FEMS Microbiol. Ecol., 1995, vol. 18, pp. 289–298.

    Article  CAS  Google Scholar 

  • Anderson, J.P.E. and Domsch, K.H., A physiological method for the quantitative measurement of microbial biomass in soils, Soil Biol. Biochem., 1978, vol. 10, pp. 314–322.

    Google Scholar 

  • Anderson, T.H. and Domsch, K.H., Application of ecophysiological quotients qCO2 and qD on microbial biomass from soils of different cropping histories, Soil Biol. Biochem., 1990, vol. 22, pp. 251–255.

    Article  Google Scholar 

  • Auman, A.J., Speake, C.C., and Lidstrom M.E., nifH sequences and nitrogen fixation in type I and type II methanotrophs, Appl. Environ. Microbiol., 2001, vol. 67, pp. 4009–4016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates, S., Berg-Lyons, D., Caporaso, J.G., Walters, W.A., Knight, R., and Fierer, N., Examining the global distribution of dominant archaeal populations in soil, ISME J., 2011, vol. 5, pp. 908–917.

    Article  CAS  PubMed  Google Scholar 

  • Bol’shiyanov, D.Yu, Makarov, A.S., Shnaider, V., and Stopf, G., Proiskhozhdenie i razvitie del’ty reki Leny (Origin and Development of the Lena River Estuary), S.-Pb.: Arctic Antarctic Res. Inst., 2013.

    Google Scholar 

  • Borjesson, G., Sundh, I., and Svensson, B., Microbial oxidation of CH4 at different temperatures in landfill cover soils, FEMS Microbiol. Ecol., 2004, vol. 48, pp. 305–312.

    Article  CAS  PubMed  Google Scholar 

  • Castelle, C.J., Wrighton, K.C., Thomas, B.C., Hug, L.A., Brown, C.T., Wilkins, M.J., Frischkorn, K.R., Tringe, S.G., Singh, A., Markillie, L.M., Taylor, R.C., Williams, K.H., and Banfield, J.F., Genomic expansion of domain Archaea highlights roles for organisms from new phyla in anaerobic carbon cycling, Curr. Biol., 2015, vol. 25, pp. 690–701.

    Article  CAS  PubMed  Google Scholar 

  • Cicerone, R.J. and Oremland, R.S., Biogeochemical aspects of atmospheric methane, Global Biogeochem. Cycles, 1988, no. 2, pp. 299–327.

    Article  CAS  Google Scholar 

  • Danilova, O.V., Belova, S.E., Dedysh, S.N., and Gagarinova, I.V., Microbial community composition and methanotroph diversity of a subarctic wetland in Russia, Microbiology (Moscow), 2016, vol. 85, no. 5, pp. 583–591.

    Article  CAS  Google Scholar 

  • Dedysh, S.N., Methanotrophic bacteria of acid Sphagnum bogs, Microbiology (Moscow), 2002, vol. 71, no. 6, pp. 638–649.

    Article  CAS  Google Scholar 

  • Dobrovol’skaya, T.G., Struktura bakterial’nykh soobshchestv pochv (Structure of Soil Bacterial Communities), Moscow: Akademkniga, 2002.

    Google Scholar 

  • Efremova, T.T., Properties of methanogenesis in West Siberian oligotrophic bogs and assessment of environmental factors related to accurate extrapolation of CH4 flows for large territories, Sibir. Ekol. Zh. 1998, no. 6, pp. 563–570.

    Google Scholar 

  • Ganzert, L., Jurgens, G., Munster, U., and Wagner, D., Methanogenic communities in permafrost affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints, FEMS Microbiol. Ecol., 2007, vol. 59, pp. 476–488.

    Article  CAS  PubMed  Google Scholar 

  • Golovchenko, A.V., Zvyagintsev, D.G., and Tikhonova, E.Yu., Abundance, biomass, structure, and activity of the microbial complexes of minerotrophic and ombrotrophic peatlands, Microbiology (Moscow), 2007, vol. 76, no. 5, pp. 630–637.

    Article  CAS  Google Scholar 

  • GOST 26570-95: Feeding-Stuff, Mixed Fodder, Mixed Fodder Sources. Calcium Determination, 2003.

  • GOST 27894. 1, 3, 4-88: Peat and Products of Its Procession for Agriculture. Analytical Methods, 1988.

  • GOST 30502-97: Feeding-Stuff, Mixed Fodder, Mixed Fodder Sources. Atomic Absorption Method of Magnesium Determination, 1999.

  • Graham, D.W., Chaudhary, J.A., Hanson, R.S., and Arnold, R.G., Factors affecting competition between type I and type II methanotrophs in two-organism, continuousflow reactors, Microbiol. Ecol., 1993, no. 25, pp. 1–17.

    Article  CAS  Google Scholar 

  • Grodnitskaya, I.D., Karpenko, L.V., Knorre, A.A., and Syrtsov, S.N., Microbial activity of peat soils of boggy larch forests and bogs in the permafrost zone of Central Evenkia, Euras. Soil Sci., 2013, no. 1, pp. 61–73.

    Article  Google Scholar 

  • Hanson, A.D. and Roje, S., One-carbon metabolism in higher plants, Ann. Rev. Plant Physiol. Plant Mol. Biol., 2001, vol. 52, pp. 119–137.

    Article  CAS  Google Scholar 

  • Hoj, L., Olsen, R.A., and Torsvik, V.L., Archaeal communities in High Arctic wetlands at Spitsbergen, Norway (78° N) as characterised by 16S rRNA gene fingerprinting, FEMS Microbiol. Ecol., 2005, vol. 53, pp. 89–101.

    Article  CAS  PubMed  Google Scholar 

  • Iguchi, H., Yurimoto, H., and Sakai, Y., Interaction of methylotrophs with plants and other heterotrophic bacteria, Microorganisms, 2015, no. 3, pp. 137–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iguchi, H., Yurimoto, H., and Sakai, Y., Stimulation of methanotrophic growth in co-cultures by cobalamin excreted by rhizobia, Appl. Environ. Microbiol., 2011, vol. 77, pp. 8509–8515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keppler, F., Hamilton, J.T.G., Braß, M., and Röckmann, T., Methane emissions from terrestrial plants under aerobic conditions, Nature, 2006, vol. 439, pp. 187–191.

    Article  CAS  PubMed  Google Scholar 

  • Keppler, F., Hamilton, J.T.G., McRoberts, C.W., Vigano, I., Braß, M., and Röckmann, T., Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labeling studies, New Phytol., 2008, vol. 178, pp. 808–814.

    Article  CAS  PubMed  Google Scholar 

  • Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., and Gloeckner, F.O., Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies, Nucl. Acids Res., 2013, vol. 41, pp. 1–11.

    Article  Google Scholar 

  • Mathews, E. and Fung, I., Methane emission from natural wetlands: global distribution area and environment characteristics of sources, Global Biogeochem. Cycles, 1987, pp. 61–86.

    Google Scholar 

  • McGuire, A.D., Anderson, L.G., Christensen, T.R., Dallimore, S., Guo, L., Hayes, D.J., Heimann, M., Lorenson, T.D., Macdonald, R.W., and Raulet, N., Sensitivity of carbon cycle in the Arctic to climate change, Ecol. Monographs, 2009, vol. 79, pp. 523–555.

    Article  Google Scholar 

  • Metje, M. and Frenzel, P., Methanogenesis and methanogenic pathways in a peat from subarctic permafrost, Environ. Microbiol., 2007, vol. 9, pp. 954–964.

    Article  CAS  PubMed  Google Scholar 

  • Metody pochvennoi mikrobiologii i biokhimii (Methods in Soil Microbiology and Biochemistry), Zvyagintsev, D.G., Ed., Moscow: Mos. Gos. Univ., 1991.

  • Ortiz-Alvarez, R. and Casamayor, E.O., High occurrence of Pacearchaeota and Woesearchaeota (Archaea superphylum DPANN) in the surface waters of oligotrophic highaltitude lakes, Environ. Microbiol. Rep., 2016, vol. 8, pp. 210–217.

    Article  CAS  PubMed  Google Scholar 

  • Oton, E.V., Quince, C., Nicol, G.W, Prosser, J.I., and Gubry-Rangin, C., Phylogenetic congruence and ecological coherence in terrestrial Thaumarchaeota, ISME J., 2016, vol. 10, pp. 85–96.

    Article  CAS  PubMed  Google Scholar 

  • Panikov, N.S., Fluxes of CO2 and CH4 in high latitude wetlands: measuring, modeling and predicting response to climate change, Polar Res, 1999, vol. 18, pp. 237–244.

    Article  Google Scholar 

  • Raghoebarsing, A.A., Smolders, A.J.P., Schmid, M.C., Rijpstra, W.I., Wolters-Arts, M., Derksen, J., Jetten, M.S., Schouten, S., Sinninghe Damsté, J.S., Lamers, L.P., Roelofs, J.G., Op den Camp, H.J., and Strous, M., Methanotrophic symbionts provide carbon for photosynthesis in peat bogs, Nature, 2005, vol. 436, pp. 1153–1156.

    Article  CAS  PubMed  Google Scholar 

  • Sorokin, N.D., Aleksandrov, D.E., Grodnitskaya, I.D., and Evgrafova, S.Yu., Microbiological transformation of carbon and nitrogen compounds in forest soils of Central Evenkia, Euras. Soil Sci., 2017, no. 4, pp. 476–482.

    Article  Google Scholar 

  • Sparling, G.T., The substrate-induced respiration method, in Methods in Applied Soil Microbiology and Biochemistry, Alef, K. and Nannipieri, P., Eds., Academic, 1995, pp. 397–404.

    Google Scholar 

  • Stieglmeier, M., Klingl, A., Alves, R.J., Rittmann, S.K., Melcher, M., Leisch, N., and Schleper, C., Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota, Int. J. Syst. Evol. Microbiol., 2014, vol. 64, pp. 2738–2752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stock, M., Hoefman, S., Kerckhof, F.M., Boon, N., de Vos, P., de Baets, B., Heylen, K., and Waegeman, W., Exploration and prediction of interactions between methanotrophs and heterotrophs, Res. Microbiol., 2013, vol. 164, pp. 1045–1054.

    Article  PubMed  Google Scholar 

  • Tarnokai, C., Canadell, J.G., Schuur, E.A.G., Kuhry, P., Mazhitova, G., and Zimov, S., Soil organic carbon pools in the northern circumpolar permafrost region, Global Biogeochem. Cycles, 2009, vol. 23, pp. 1–11.

    Google Scholar 

  • Vomperskii, S.E., Bogs of the Russian territory as a factor of carbon accumulation, in Global’nye izmeneniya okruzhayushchei sredy i klimata (Global Climatic and Environmental Changes), Moscow, 1999, pp. 124–144.

    Google Scholar 

  • Wagner, D., Kobabe, S., Pfeiffer, E.-M., and Hubberten, H., Microbial controls on methane fluxes from a polygonal tundra of the Lena Delta, Siberia, Permafrost Periglacial Proc., 2003, no. 14, pp. 173–185.

    Article  Google Scholar 

  • Zavarzin, G.A., Methane cycle in the Russian territory, in Krugovorot ugleroda na territorii Rossiii (Carbon Cycle in the Russian Territory), Moscow, 1999, pp. 202–233.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Grodnitskaya.

Additional information

Original Russian Text © I.D. Grodnitskaya, M.Yu. Trusova, S.N. Syrtsov, N.V. Koroban, 2018, published in Mikrobiologiya, 2018, Vol. 87, No. 1, pp. 79–92.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grodnitskaya, I.D., Trusova, M.Y., Syrtsov, S.N. et al. Structure of microbial communities of peat soils in two bogs in Siberian tundra and forest zones. Microbiology 87, 89–102 (2018). https://doi.org/10.1134/S0026261718010083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261718010083

Keywords

Navigation