Skip to main content
Log in

Anaerobic cellulolytic microbial communities decomposing the biomass of Anabaena variabilis

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Four previously isolated methanogenic anaerobic consortia, which were originally cultivated on a cellulose-containing substrate (filter paper), were used as inocula for the anaerobic conversion of the biomass of Anabaena variabilis into biogas at 55°C. The cumulative methane yield in the biogas produced by the most active consortia reached 64%. However, the biotransformation was only efficient in the course of the single inoculation and pretreatment of the cyanobacterial biomass by its concentration and freeze-thawing. The DGGE analysis of the structure of the selected microbial consortia, cultivated on the filter paper, revealed qualitative variations in the biodiversity of predominant Bacteria, showing differences in band number and intensity. The composition of methanogenic Archaea in these consortia was similar, with the presence of the genera Methanoculleus and Methanosarcina. The efficiency of the microbial consortia selection, and the role of the various microbial trophic groups in bioconversion of the substrates, such as cellulose and the biomass of phototrophic microorganisms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali Shah, F., Mahmood, Q., Maroof Shah, M., Pervez, A., and Ahmad Asad, S., Microbial ecology of anaerobic digesters: the key players of anaerobiosis, Sci. World J., 2014, http://dx.doi.org/10.1155/2014/183752

    Google Scholar 

  • Ambulkar, A.R. and Shekdar, A.V., Prospects of biomethanation technology in the Indian context: a pragmatic approach, Res. Conserv. Recycl., 2004, vol. 40, no. 2, pp. 111–128.

    Article  Google Scholar 

  • Antizar-Ladislao, B. and Turrion-Gomez, J.L., Secondgeneration biofuels and local bioenergy systems, Biofuels, Bioprod. Bioref., 2008, vol. 2, no. 5, pp. 455–469.

    Article  CAS  Google Scholar 

  • Bruhn, A., Dahl, J., Nielsen, H.B., Nikolaisen, L., Rasmussen, M.B., Markager, S., Olsen, B., Arias, C., and Jensen, P.D., Bioenergy potential of Ulva lactuca: biomass yield, methane production and combustion, Biores. Technol., 2011, vol. 102, no. 3, pp. 2595–2604.

    Article  CAS  Google Scholar 

  • Dębowski, M., Zieliński, M., Grala, A., and Dudek, M., Algae biomass as an alternative substrate in biogas production technologies- Review, Ren. Sustain. Energy Rev., 2013, vol. 27, pp. 596–604.

    Article  Google Scholar 

  • Esquivel-Elizondo, S., Parameswaran, P., Delgado, A.G., Maldonado, J., Rittmann, B.E., and Krajmalnik-Brown, R., Archaea and Bacteria acclimate to high total ammonia in a methanogenic reactor treating swine waste, Archaea, 2016. http://dx.doi.org/10.1155/2016/4089684

    Google Scholar 

  • Eze, J.I. and Uzodinma, E.O., Generation of methane gas from poultry brooding house, Pacific J. Sci. Technol., 2009, vol. 10, no. 2, pp. 942–948.

    Google Scholar 

  • Fargione, J., Hill, J., Tilman, D., Polasky, S., and Hawthorne, P., Land clearing and the biofuel carbon debt, Science, 2008, vol. 319, no. 5867, pp. 1235–1238.

    Article  CAS  PubMed  Google Scholar 

  • Gasanova, L.G., Netrusov, A.I., Teplyakov, V.V, and Modigell, M., Fuel gases from organic wastes using membrane bioreactors, Desalination, 2006, vol. 198, nos. 1–3, pp. 56–66.

    Article  Google Scholar 

  • Gieg, L.M. Duncan, K.E., and Suflita, J.M., Bioenergy production via microbial conversion of residual oil to natural gas, Appl. Environ. Microbiol., 2008, vol. 74, pp. 3022–3029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattori, S., Syntrophic acetate-oxidizing microbes in methanogenic environments, Microbes Environ., 2008, vol. 23, no. 2, pp. 118–127.

    Article  PubMed  Google Scholar 

  • Johansson, D. and Azar, C.A., A scenario based analysis of land competition between food and bioenergy production in the US, Climate Change, 2007, vol. 82, no. 3, pp. 267–291.

    Article  CAS  Google Scholar 

  • Kublanov, I.V., Perevalova, A.A., Slobodkina, G.B., Lebedinsky, A.V., Bidzhieva, S.K., Kolganova, T.V., Kaliberda, E.N., Rumsh, L.D., Haertlé, T., and Bonch-Osmolovskaya, E.A., Biodiversity of thermophilic prokaryotes with hydrolitic activities in hot springs of Uzon Caldera, Kamchatka (Russia), Appl. Environ. Microbiol., 2009, vol. 75, no. 1, pp. 286–291.

    Article  CAS  PubMed  Google Scholar 

  • Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1982.

    Google Scholar 

  • Mata-Alvarez, J., Macé, S., and Llabrés, P., Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives, Biores. Technol., 2000, vol. 4, no. 1, pp. 3–16.

    Article  Google Scholar 

  • Mata, T.M., Martins, A.A., and Caetano, N.S., Microalgae for biodiesel production and other applications: a review, Renew. Sust. Energ. Rev., 2010, vol. 14, pp. 217–232.

    Article  CAS  Google Scholar 

  • Maus, I., Koeck, D.E., Cibis, K.G., Hahnke, S., Kim, Y.S, Langer, T., Kreubel, J., Erhard, M., Bremges, A., Off, S., Stolze, Y., Jaenicke, S., Goesmann, A., Sczyrba, A., Scherer, P., et al., Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates, Biotechnol. Biofuel., 2016, vol. 9:171.

    Google Scholar 

  • Montingelli, M.E., Tedesco, S., and Olabi, A.G., Biogas production from algal biomass: a review, Renew. Sustain. Energy Rev., 2015, vol. 43, pp. 961–972.

    Article  CAS  Google Scholar 

  • Muyzer, G. and Smalla, K., Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology, Antonie van Leeuwenhoek, 1998, vol. 73, no. 1, pp. 127–141.

    Article  CAS  PubMed  Google Scholar 

  • Nobles, D.R., Romanovicz, D.K., and Brown, R.M., Jr., Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase?, Plant Physiol., 2001, vol. 127, no. 2, pp. 529–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, K.Y., Kweon, J., Chantrasakdakul, P., Lee, K., and Young Cha, H., Anaerobic digestion of microalgal biomass with ultrasonic disintegration, Int. Biodeterior. Biodegrad., 2013, vol. 85, pp. 598–602.

    Article  CAS  Google Scholar 

  • Prokudina, L.I., Osmolovskiy, A.A., Egorova, M.A., Malakhova, D.V., Netrusov, A.I., and Tsavkelova, E.A., Biodegradation of cellulose-containing substrates by micromycetes followed by bioconversion into biogas, Appl. Biochem. Microbiol., vol. 52, no. 2, pp. 190–198.

  • Ras, M., Lardon, L., Bruno, S., Bernet, N., and Steyer, J.-P., Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris, Biores. Technol., 2011, vol. 102, pp. 200–206.

    Article  CAS  Google Scholar 

  • Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M., and Stanier, R.J., Generic assignments, strain histories and properties of pure cultures of Cyanobacteria, J. Gen. Microbiol., 1979, vol. 111, pp. 1–61.

    Google Scholar 

  • Schweieger, F. and Tebbe, C.C., A new approach to utilize PCR–single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis, Appl. Environ. Microbiol., 1998, vol. 64, no. 12, pp. 4870–4876.

    Google Scholar 

  • Searchinger, T., Heimlich, R., Houghton, R., Dong, F., Elobeid, A, Fabiosa, J., Tokgoz, S., Hayes, D., and Yu, T.-H., Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change, Science, 2008, vol. 319, no. 5867, pp. 1238–1240.

    Article  CAS  PubMed  Google Scholar 

  • Song, H. and Clarke, P., Cellulose hydrolysis by a methanogenic culture enriched from landfill waste in a semi-continuous reactor, Biores. Technol., 2009, vol. 100, pp. 1268–1273.

    Article  CAS  Google Scholar 

  • Stahl, D.A. and Amann, R., Development and application of nucleic acid probes in bacterial systematic, in Nucleic Acid Techniques in Bacterial Systematics, Stackebrandt, E. and Goodfellow, M., Eds., Chichester: Wiley, 1991, pp. 205–248.

    Google Scholar 

  • Tsavkelova, E.A. and Netrusov, A.I., Biogas production from cellulose-containing substrates (a review), Appl. Biochem. Microbiol., 2012, vol. 48, no. 5, pp. 421–433.

    Article  CAS  Google Scholar 

  • Tsavkelova, E.A., Egorova, M.A., Petrova, E.V., and Netrusov, A.I., Biogas production by microbial communities via decomposition of cellulose and food waste, Appl. Biochem. Microbiol., 2012b, vol. 48, no. 4, pp. 377–384.

    Article  CAS  Google Scholar 

  • Tsavkelova, E.A., Egorova, M.A., Petrova, E.V., and Netrusov, A.I., Thermophilic anaerobic microbial communities that transform cellulose into methane (biogas), Moscow Univ. Biol. Sci. Bull., 2012а, vol. 67, no. 2, pp. 75–81.

    Article  Google Scholar 

  • Vanegas, C.H. and Barlett, J., Green energy from marine algae: biogas production and composition from the anaerobic digestion of Irish seaweed species, Environ. Technol., 2013, vol. 34, no. 15, pp. 2277–2283.

    Article  CAS  PubMed  Google Scholar 

  • Yen, H.-W. and Brune, D.E., Anaerobic co-digestion of algal sludge and waste paper to produce methane, Biores. Technol., 2007, vol. 98, no. 1, pp. 130–134.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Tsavkelova.

Additional information

Original Russian Text © E.V. Petrova, M.A. Egorova, N.F. Piskunkova, P.A. Kozhevin, A.I. Netrusov, E.A. Tsavkelova, 2017, published in Mikrobiologiya, 2017, Vol. 86, No. 6, pp. 729–738.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrova, E.V., Egorova, M.A., Piskunkova, N.F. et al. Anaerobic cellulolytic microbial communities decomposing the biomass of Anabaena variabilis. Microbiology 86, 745–752 (2017). https://doi.org/10.1134/S0026261717060133

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261717060133

Keywords

Navigation