Skip to main content
Log in

Microorganisms of low-temperature heavy oil reservoirs (Russia) and their possible application for enhanced oil recovery

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Physicochemical and microbiological characteristics of formation waters low-temperature heavy oil reservoirs (Russia) were investigated. The Chernoozerskoe, Yuzhno-Suncheleevskoe, and Severo-Bogemskoe oilfields, which were exploited without water-flooding, were shown to harbor scant microbial communities, while microbial numbers in the water-flooded strata of the Vostochno-Anzirskoe and Cheremukhovskoe oilfields was as high as 106 cells/mL. The rates of sulfate reduction and methanogenesis were low, not exceeding 1982 ng S2–/(L day) and 9045 nL СН4/(L day), respectively, in the samples from water-flooded strata. High-throughput sequencing of microbial 16S rRNA gene fragments in the community of injection water revealed the sequences of the Proteobacteria (74.7%), including Betaproteobacteria (40.2%), Alphaproteobacteria (20.7%), Gammaproteobacteria (10.1%), Deltaproteobacteria (2.0%), and Epsilonproteobacteria (1.6%), as well as Firmicutes (7.9%), Bacteroidetes (4.1%), and Archaea (0.2%). DGGE analysis of microbial mcrA genes in the community of injection water revealed methanogens of the genera Methanothrix, Methanospirillum, Methanobacterium, Methanoregula, Methanosarcina, and Methanoculleus, as well as unidentified Thermoplasmata. Pure cultures of bacteria of the genera Rhodococcus, Pseudomonas, Gordonia, Cellulomonas, etc., capable of biosurfactant production when grown on heavy oil, were isolated. Enrichment cultures of fermentative bacteria producing significant amounts of volatile organic acids (acetic, propionic, and butyric) from sacchariferous substrates were obtained. These acids dissolve the carbonates of oil-bearing rock efficiently. Selection of the efficient microbial technology for enhanced recovery of heavy oil from terrigenous and carbonate strata requires model experiments with microbial isolates and the cores of oil-bearing rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Bahry, S.N., Elshafie, A.E., Al-Wahaibi, Y.M., Al-Bemani, A.S., Joshi, S.J., Al-Maaini, R.A., Al-Alawai, W.J., Sugai, Y., and Al-Mandhari, M., Microbial consortia in Oman oil fields: a possible use in enhanced oil recovery, J. Microbiol. Biotechnol., 2013, vol. 23, pp. 106–117.

    Article  CAS  PubMed  Google Scholar 

  • Al-Wahaibi, Y., Al-Hadrami, H., Al-Bahry, S., Elshafie, A., Al-Bemani, A., and Joshi, S., Residual oil recovery via injection of biosurfactant and chemical surfactant following hot water injection in Middle East heavy oil field, Heavy Oil Conf, Alberta, 2013, paper SPE 165525, pp. 1–10.

    Google Scholar 

  • Belyaev, S.S., Borzenkov, I.A., Nazina, T.N., Rozanova, E.P., Glumov, I.F., Ibatullin, R.R., and Ivanov, M.V., Use of microorganisms in the biotechnology for the enhancement of oil recovery, Microbiology (Moscow), 2004, vol. 73, pp. 590–598.

    Article  CAS  Google Scholar 

  • Bolger, A.M., Lohse, M., and Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, 2014, vol. 30. pp. 2114–2120.

    Google Scholar 

  • Bonch-Osmolovskaya, E.A., Miroshnichenko, M.L., Lebedinsky, A.V., Chernyh, N.A., Nazina, T.N., Ivoilov, V.S., Belyaev, S.S., Boulygina, E.S., Lysov, Yu.P., Perov, A.N., Mirzabekov, A.D., Hippe, H., Stackebrandt, E., L’Haridon, S., and Jeanthon, C., Radioisotopic, culturebased, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir, Appl. Environ. Microbiol., 2003, vol. 69, pp. 6143–6151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borzenkov, I.A., Milekhina, E.I., Gotoeva, M.T., Rozanova, E.P., and Belyaev, S.S., The properties of hydrocarbon-oxidizing bacteria isolated from the oilfields of Tatarstan, Western Siberia, and Vietnam, Microbiology (Moscow), 2006, vol. 75, pp. 66–72.

    Article  CAS  Google Scholar 

  • Cai, M., Chan, Yu.C., Wang, R., Si, Y., Masakorala, K., Yuan, H., Yao, J., and Zhang, J., Effects of oxygen injection on oil biodegradation and biodiversity of reservoir microorganisms in Dagang oil field, China, Int. Biodeter. Biodeg., 2015, vol. 98, pp. 59–65.

    Article  CAS  Google Scholar 

  • Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., et al., QIIME allows analysis of high-throughput community sequencing data, Nat. Methods, 2010, vol. 7, pp. 335–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper, D.G., Biosurfactants and enhanced oil recovery, Proc. Int. Conf. Microbial Enhanced Oil Recovery, Afton, UK, 1982, pp. 112–114.

    Google Scholar 

  • Gray, N.D., Sherry, A., Hubert, C., Dolfing, J., and Head, I.M., Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery, Adv. Appl. Microbiol., 2010, vol. 72, pp. 137–161.

    Article  CAS  PubMed  Google Scholar 

  • Hao, R. and Lu, A., Biodegradation of heavy oils by halophilic bacterium, Progr. Nat. Sci., 2009, vol. 19, pp. 997–1001.

    Article  CAS  Google Scholar 

  • Hayes, M.E., Hrebenar, K.R., Murphy, P.L., Futch, L.E., Jr., Deal, J.F., and Bolden, P.L., Jr., Bioemulsifier-stabilized hydrocarbosols, US Patent 4,943,390, 1990.

    Google Scholar 

  • Head, I.M., Jones, D.M., and Larter, S., Biological activity in the deep subsurface and the origin of heavy oil, Nature, 2003, vol. 426, pp. 344–352.

    Article  CAS  PubMed  Google Scholar 

  • Hubert, C.R.J., Oldenburg, T.B.P., Fustic, M., Gray, N.D., Larter, S.R., Penn, K., Rowan, A.K., Seshadri, R., Sherry, A., Swainsbury, R., Voordouw, G., Voordouw, J.K., and Head, I.M., Massive dominance of Epsilonproteobacteria in formation waters from a Canadian oil sands reservoir containing severely biodegraded oil, Environ. Microbiol., 2012, vol. 14, pp. 387–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiménez, N., Morris, B.E.L., Cai, M., Gründger, F., Yao, J., Richnow, H.H., and Krüger, M., Evidence for in situ methanogenic oil degradation in the Dagang oil field, Org. Geochem., 2012, vol. 52, pp. 44–54.

    Article  Google Scholar 

  • Kodama, Y., Ha, L.T., and Watanabe, K., Sulfurospirillum cavolei sp. nov., a facultatively anaerobic sulfur-reducing bacterium isolated from an underground crude oil storage cavity, Int. J. Syst. Evol. Microbiol., 2007, vol. 57, pp. 827–831.

    Article  CAS  PubMed  Google Scholar 

  • Leon, V. and Kumar, M., Biological upgrading of heavy crude oil, Biotechnol. Bioproc. Eng., 2005, vol. 10, pp. 471–481.

    Article  CAS  Google Scholar 

  • Maniatis, T., Fritsh, E.E., and Sambrook, J., Molecular Cloning. A Laboratory Manual, Cold Spring Harbor Laboratory, 1982.

    Google Scholar 

  • Muyzer, G., Brinkhoff, T., Nübel, U., Santegoeds, C., Schäfer, H., and Wawer, C., Denaturing gradient gel electrophoresis (DGGE) in microbial ecology, in Molecular Microbial Ecology Manual, Akkermans, A.D.L., van Elsas, J.D., and de Bruijn, F.J., Eds., Dordrecht: Kluwer Academic, 1998, pp. 1–27.

    Google Scholar 

  • Nazina, T.N., Feng, O., Kostryukova, N.K., Shestakova, N.M., Babich, T.L., Ni, F., Wang, J., Min, L., and Ivanov, M.V., Microbiological and production characteristics of the Dagang high-temperature heavy oil reservoir (block no. 1) during trials of the biotechnology for enhanced oil recovery, Microbiology (Moscow), 2017, vol. 86, no. 5, pp. 653–665.

    Article  CAS  Google Scholar 

  • Nazina, T.N., Grigor’yan, A.A., Shestakova, N.M., Babich, T.L., Pavlova, N.K., Ivoilov, V.S., Belyaev, S.S., Ivanov, M.V., Feng, Q., Ni, F., Wang, J., She, Y., Xiang, T., Mei, B., and Luo, Z., MEOR study enhances production in a high-temperature reservoir, World Oil, 2008, June, pp. 97–101.

    Google Scholar 

  • Nazina, T.N., Pavlova, N.K., Ni, F., Shestakova, N.M., Ivoilov, V.S., Feng, Q., Dongyun, Z., Prusakova, T.S., Belyaev, S.S., and Ivanov, M.V., Regulation of geochemical activity of microorganisms in a petroleum reservoir by injection of H2O2 or water-air mixture, Microbiology (Moscow), 2008, vol. 77, pp. 324–333.

    Article  CAS  Google Scholar 

  • Nazina, T.N., Shestakova, N.M., Grigor’yan, A.A., Mikhailova, E.M., Tourova, T.P., Poltaraus, A.B., Feng, Q., Ni, F., and Belyaev, S.S., Phylogenetic diversity and activity of anaerobic microorganisms of high-temperature horizons of the Dagang oil field (P. R. China), Microbiology (Moscow), 2006, vol. 75, pp. 55–65.

    Article  CAS  Google Scholar 

  • Nazina, T.N., Shestakova, N.M., Semenova, E.M., Korshunova, A.V., Kostrukova, N.K., Tourova, T.P., Min, L., Feng, Q., and Poltaraus, A.B., Diversity of metabolically active Bacteria in water-flooded high-temperature heavy oil reservoir, Front. Microbiol., 2017. 8:707. doi 10.3389/fmicb.2017.00707

    Article  PubMed  PubMed Central  Google Scholar 

  • Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F.O., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucl. Acids Res., 2013, Jan, 41, database issue: D590-6.

    Google Scholar 

  • Shestakova, N.M., Ivoilov, V.S., Tourova, T.P., Belyaev, S.S., Poltaraus, A.B., and Nazina, T.N., Application of clone libraries: syntrophic acetate degradation to methane in a high-temperature petroleum reservoir: culture-based and 16S rRNA genes characterization, in Applied Microbiology and Molecular Biology in Oil Field Systems, Whitby, C. and Skovhus, T.L., Eds., 2011, Ch. 6, pp. 45–53.

    Google Scholar 

  • Steinberg, L.M. and Regan, J.M., Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge, Appl. Environ. Microbiol., 2008, vol. 74, pp. 6663–6671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi, S., Tomita, J., Nishioka, K., Hisada T., and Nishijima, M., Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing, PLoS One, 2014. 21. 9(8):e105592. https://doi.org/10.1371/journal.pone. 0105592.

    Article  Google Scholar 

  • Thompson, J.D., Higgins, D.G., and Gibson, T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions specific gap penalties and weight matrix choice, Nucl. Acids Res., 1994, vol. 9, pp. 3251–3270.

    Google Scholar 

  • Van de Peer, Y. and De Wachter, R. TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment, Comput. Appl. Biosci., 1994, vol. 10, pp. 569–570.

    PubMed  Google Scholar 

  • Yashchenko, I.G., Heavy vanadium-bearing oils in Russia, Izv. Tomsk Politekh. Inst., 2012, vol. 321, no. 1, pp. 105–111.

    Google Scholar 

  • Youssef, N., Elshahed, M.S., and McInerney, M.J., Microbial processes in oil fields: culprits, problems and opportunities, in Advances in Applied Microbiology, Laskin, A.I., Sariaslani, S., and Gadd, G.M., Eds., Burlington: Academic, 2009, vol. 66, pp. 141–251.

    Google Scholar 

  • Zhang, T., Chen, X., Lan, G., and Jiang, Z., Microbial degradation influences on heavy oil characters and MEOR test, Proc. 18th World Petroleum Congr., Johannesburg, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Nazina.

Additional information

Original Russian Text © T.N. Nazina, D.Sh. Sokolova, T.L. Babich, E.M. Semenova, A.P. Ershov, S.Kh. Bidzhieva, I.A. Borzenkov, A.B. Poltaraus, M.R. Khisametdinov, T.P. Tourova, 2017, published in Mikrobiologiya, 2017, Vol. 86, No. 6, pp. 748–761.

Electronic supplementary material

11021_2017_6934_MOESM1_ESM.pdf

Microorganisms in low-temperature heavy oil reservoirs (Russia) and their possible application for enhanced oil recovery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazina, T.N., Sokolova, D.S., Babich, T.L. et al. Microorganisms of low-temperature heavy oil reservoirs (Russia) and their possible application for enhanced oil recovery. Microbiology 86, 773–785 (2017). https://doi.org/10.1134/S0026261717060121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261717060121

Keywords

Navigation