Microbiology

, Volume 86, Issue 6, pp 773–785 | Cite as

Microorganisms of low-temperature heavy oil reservoirs (Russia) and their possible application for enhanced oil recovery

  • T. N. Nazina
  • D. Sh. Sokolova
  • T. L. Babich
  • E. M. Semenova
  • A. P. Ershov
  • S. Kh. Bidzhieva
  • I. A. Borzenkov
  • A. B. Poltaraus
  • M. R. Khisametdinov
  • T. P. Tourova
Experimental Articles

Abstract

Physicochemical and microbiological characteristics of formation waters low-temperature heavy oil reservoirs (Russia) were investigated. The Chernoozerskoe, Yuzhno-Suncheleevskoe, and Severo-Bogemskoe oilfields, which were exploited without water-flooding, were shown to harbor scant microbial communities, while microbial numbers in the water-flooded strata of the Vostochno-Anzirskoe and Cheremukhovskoe oilfields was as high as 106 cells/mL. The rates of sulfate reduction and methanogenesis were low, not exceeding 1982 ng S2–/(L day) and 9045 nL СН4/(L day), respectively, in the samples from water-flooded strata. High-throughput sequencing of microbial 16S rRNA gene fragments in the community of injection water revealed the sequences of the Proteobacteria (74.7%), including Betaproteobacteria (40.2%), Alphaproteobacteria (20.7%), Gammaproteobacteria (10.1%), Deltaproteobacteria (2.0%), and Epsilonproteobacteria (1.6%), as well as Firmicutes (7.9%), Bacteroidetes (4.1%), and Archaea (0.2%). DGGE analysis of microbial mcrA genes in the community of injection water revealed methanogens of the genera Methanothrix, Methanospirillum, Methanobacterium, Methanoregula, Methanosarcina, and Methanoculleus, as well as unidentified Thermoplasmata. Pure cultures of bacteria of the genera Rhodococcus, Pseudomonas, Gordonia, Cellulomonas, etc., capable of biosurfactant production when grown on heavy oil, were isolated. Enrichment cultures of fermentative bacteria producing significant amounts of volatile organic acids (acetic, propionic, and butyric) from sacchariferous substrates were obtained. These acids dissolve the carbonates of oil-bearing rock efficiently. Selection of the efficient microbial technology for enhanced recovery of heavy oil from terrigenous and carbonate strata requires model experiments with microbial isolates and the cores of oil-bearing rocks.

Keywords

oilfields heavy oil sulfate reduction methanogenesis high-throughput sequencing 16S rRNA gene mcrA gene biosurfactants microbial biotechnologies for enhanced oil recovery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11021_2017_6934_MOESM1_ESM.pdf (239 kb)
Microorganisms in low-temperature heavy oil reservoirs (Russia) and their possible application for enhanced oil recovery

References

  1. Al-Bahry, S.N., Elshafie, A.E., Al-Wahaibi, Y.M., Al-Bemani, A.S., Joshi, S.J., Al-Maaini, R.A., Al-Alawai, W.J., Sugai, Y., and Al-Mandhari, M., Microbial consortia in Oman oil fields: a possible use in enhanced oil recovery, J. Microbiol. Biotechnol., 2013, vol. 23, pp. 106–117.CrossRefPubMedGoogle Scholar
  2. Al-Wahaibi, Y., Al-Hadrami, H., Al-Bahry, S., Elshafie, A., Al-Bemani, A., and Joshi, S., Residual oil recovery via injection of biosurfactant and chemical surfactant following hot water injection in Middle East heavy oil field, Heavy Oil Conf, Alberta, 2013, paper SPE 165525, pp. 1–10.Google Scholar
  3. Belyaev, S.S., Borzenkov, I.A., Nazina, T.N., Rozanova, E.P., Glumov, I.F., Ibatullin, R.R., and Ivanov, M.V., Use of microorganisms in the biotechnology for the enhancement of oil recovery, Microbiology (Moscow), 2004, vol. 73, pp. 590–598.CrossRefGoogle Scholar
  4. Bolger, A.M., Lohse, M., and Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, 2014, vol. 30. pp. 2114–2120.Google Scholar
  5. Bonch-Osmolovskaya, E.A., Miroshnichenko, M.L., Lebedinsky, A.V., Chernyh, N.A., Nazina, T.N., Ivoilov, V.S., Belyaev, S.S., Boulygina, E.S., Lysov, Yu.P., Perov, A.N., Mirzabekov, A.D., Hippe, H., Stackebrandt, E., L’Haridon, S., and Jeanthon, C., Radioisotopic, culturebased, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir, Appl. Environ. Microbiol., 2003, vol. 69, pp. 6143–6151.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Borzenkov, I.A., Milekhina, E.I., Gotoeva, M.T., Rozanova, E.P., and Belyaev, S.S., The properties of hydrocarbon-oxidizing bacteria isolated from the oilfields of Tatarstan, Western Siberia, and Vietnam, Microbiology (Moscow), 2006, vol. 75, pp. 66–72.CrossRefGoogle Scholar
  7. Cai, M., Chan, Yu.C., Wang, R., Si, Y., Masakorala, K., Yuan, H., Yao, J., and Zhang, J., Effects of oxygen injection on oil biodegradation and biodiversity of reservoir microorganisms in Dagang oil field, China, Int. Biodeter. Biodeg., 2015, vol. 98, pp. 59–65.CrossRefGoogle Scholar
  8. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., et al., QIIME allows analysis of high-throughput community sequencing data, Nat. Methods, 2010, vol. 7, pp. 335–336.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cooper, D.G., Biosurfactants and enhanced oil recovery, Proc. Int. Conf. Microbial Enhanced Oil Recovery, Afton, UK, 1982, pp. 112–114.Google Scholar
  10. Gray, N.D., Sherry, A., Hubert, C., Dolfing, J., and Head, I.M., Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery, Adv. Appl. Microbiol., 2010, vol. 72, pp. 137–161.CrossRefPubMedGoogle Scholar
  11. Hao, R. and Lu, A., Biodegradation of heavy oils by halophilic bacterium, Progr. Nat. Sci., 2009, vol. 19, pp. 997–1001.CrossRefGoogle Scholar
  12. Hayes, M.E., Hrebenar, K.R., Murphy, P.L., Futch, L.E., Jr., Deal, J.F., and Bolden, P.L., Jr., Bioemulsifier-stabilized hydrocarbosols, US Patent 4,943,390, 1990.Google Scholar
  13. Head, I.M., Jones, D.M., and Larter, S., Biological activity in the deep subsurface and the origin of heavy oil, Nature, 2003, vol. 426, pp. 344–352.CrossRefPubMedGoogle Scholar
  14. Hubert, C.R.J., Oldenburg, T.B.P., Fustic, M., Gray, N.D., Larter, S.R., Penn, K., Rowan, A.K., Seshadri, R., Sherry, A., Swainsbury, R., Voordouw, G., Voordouw, J.K., and Head, I.M., Massive dominance of Epsilonproteobacteria in formation waters from a Canadian oil sands reservoir containing severely biodegraded oil, Environ. Microbiol., 2012, vol. 14, pp. 387–404.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Jiménez, N., Morris, B.E.L., Cai, M., Gründger, F., Yao, J., Richnow, H.H., and Krüger, M., Evidence for in situ methanogenic oil degradation in the Dagang oil field, Org. Geochem., 2012, vol. 52, pp. 44–54.CrossRefGoogle Scholar
  16. Kodama, Y., Ha, L.T., and Watanabe, K., Sulfurospirillum cavolei sp. nov., a facultatively anaerobic sulfur-reducing bacterium isolated from an underground crude oil storage cavity, Int. J. Syst. Evol. Microbiol., 2007, vol. 57, pp. 827–831.CrossRefPubMedGoogle Scholar
  17. Leon, V. and Kumar, M., Biological upgrading of heavy crude oil, Biotechnol. Bioproc. Eng., 2005, vol. 10, pp. 471–481.CrossRefGoogle Scholar
  18. Maniatis, T., Fritsh, E.E., and Sambrook, J., Molecular Cloning. A Laboratory Manual, Cold Spring Harbor Laboratory, 1982.Google Scholar
  19. Muyzer, G., Brinkhoff, T., Nübel, U., Santegoeds, C., Schäfer, H., and Wawer, C., Denaturing gradient gel electrophoresis (DGGE) in microbial ecology, in Molecular Microbial Ecology Manual, Akkermans, A.D.L., van Elsas, J.D., and de Bruijn, F.J., Eds., Dordrecht: Kluwer Academic, 1998, pp. 1–27.Google Scholar
  20. Nazina, T.N., Feng, O., Kostryukova, N.K., Shestakova, N.M., Babich, T.L., Ni, F., Wang, J., Min, L., and Ivanov, M.V., Microbiological and production characteristics of the Dagang high-temperature heavy oil reservoir (block no. 1) during trials of the biotechnology for enhanced oil recovery, Microbiology (Moscow), 2017, vol. 86, no. 5, pp. 653–665.CrossRefGoogle Scholar
  21. Nazina, T.N., Grigor’yan, A.A., Shestakova, N.M., Babich, T.L., Pavlova, N.K., Ivoilov, V.S., Belyaev, S.S., Ivanov, M.V., Feng, Q., Ni, F., Wang, J., She, Y., Xiang, T., Mei, B., and Luo, Z., MEOR study enhances production in a high-temperature reservoir, World Oil, 2008, June, pp. 97–101.Google Scholar
  22. Nazina, T.N., Pavlova, N.K., Ni, F., Shestakova, N.M., Ivoilov, V.S., Feng, Q., Dongyun, Z., Prusakova, T.S., Belyaev, S.S., and Ivanov, M.V., Regulation of geochemical activity of microorganisms in a petroleum reservoir by injection of H2O2 or water-air mixture, Microbiology (Moscow), 2008, vol. 77, pp. 324–333.CrossRefGoogle Scholar
  23. Nazina, T.N., Shestakova, N.M., Grigor’yan, A.A., Mikhailova, E.M., Tourova, T.P., Poltaraus, A.B., Feng, Q., Ni, F., and Belyaev, S.S., Phylogenetic diversity and activity of anaerobic microorganisms of high-temperature horizons of the Dagang oil field (P. R. China), Microbiology (Moscow), 2006, vol. 75, pp. 55–65.CrossRefGoogle Scholar
  24. Nazina, T.N., Shestakova, N.M., Semenova, E.M., Korshunova, A.V., Kostrukova, N.K., Tourova, T.P., Min, L., Feng, Q., and Poltaraus, A.B., Diversity of metabolically active Bacteria in water-flooded high-temperature heavy oil reservoir, Front. Microbiol., 2017. 8:707. doi 10.3389/fmicb.2017.00707CrossRefPubMedPubMedCentralGoogle Scholar
  25. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F.O., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucl. Acids Res., 2013, Jan, 41, database issue: D590-6.Google Scholar
  26. Shestakova, N.M., Ivoilov, V.S., Tourova, T.P., Belyaev, S.S., Poltaraus, A.B., and Nazina, T.N., Application of clone libraries: syntrophic acetate degradation to methane in a high-temperature petroleum reservoir: culture-based and 16S rRNA genes characterization, in Applied Microbiology and Molecular Biology in Oil Field Systems, Whitby, C. and Skovhus, T.L., Eds., 2011, Ch. 6, pp. 45–53.Google Scholar
  27. Steinberg, L.M. and Regan, J.M., Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge, Appl. Environ. Microbiol., 2008, vol. 74, pp. 6663–6671.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Takahashi, S., Tomita, J., Nishioka, K., Hisada T., and Nishijima, M., Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing, PLoS One, 2014. 21. 9(8):e105592. https://doi.org/10.1371/journal.pone. 0105592.CrossRefGoogle Scholar
  29. Thompson, J.D., Higgins, D.G., and Gibson, T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions specific gap penalties and weight matrix choice, Nucl. Acids Res., 1994, vol. 9, pp. 3251–3270.Google Scholar
  30. Van de Peer, Y. and De Wachter, R. TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment, Comput. Appl. Biosci., 1994, vol. 10, pp. 569–570.PubMedGoogle Scholar
  31. Yashchenko, I.G., Heavy vanadium-bearing oils in Russia, Izv. Tomsk Politekh. Inst., 2012, vol. 321, no. 1, pp. 105–111.Google Scholar
  32. Youssef, N., Elshahed, M.S., and McInerney, M.J., Microbial processes in oil fields: culprits, problems and opportunities, in Advances in Applied Microbiology, Laskin, A.I., Sariaslani, S., and Gadd, G.M., Eds., Burlington: Academic, 2009, vol. 66, pp. 141–251.Google Scholar
  33. Zhang, T., Chen, X., Lan, G., and Jiang, Z., Microbial degradation influences on heavy oil characters and MEOR test, Proc. 18th World Petroleum Congr., Johannesburg, 2005.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • T. N. Nazina
    • 1
  • D. Sh. Sokolova
    • 1
  • T. L. Babich
    • 1
  • E. M. Semenova
    • 1
  • A. P. Ershov
    • 1
  • S. Kh. Bidzhieva
    • 1
  • I. A. Borzenkov
    • 1
  • A. B. Poltaraus
    • 2
  • M. R. Khisametdinov
    • 3
  • T. P. Tourova
    • 1
  1. 1.Winogradsky Institute of Microbiology, Research Center of BiotechnologyRussian Academy of SciencesMoscowRussia
  2. 2.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  3. 3.Tatar Oil Research and Design Institute (TatNIPIneft)BugulmaRussia

Personalised recommendations