Skip to main content
Log in

Morphological, physiological, and biochemical characteristics of a benzoate-degrading strain Rhodococcus opacus 1CP under stress conditions

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Ability of actinobacteria Rhodococcus opacus 1CP to survive under unfavorable conditions and retain its biodegradation activity was assessed. The morphological and ultrastructural features of R. opacus 1CP cells degrading benzoate in the presence of oxidants and stress-protecting agents were investigated. The cells of R. opacus 1CP were resistant to oxidative stress caused by up to 100 mM H2O2 or up to 25 μM juglone (5-oxy-1,4-naphthoquinone). After 2 h of stress impact, changes in the fatty acid composition, increased activity of antioxidant enzymes, and changes in cell morphology and ultrastructure were observed. The strain retained its ability to degrade benzoate. Quercetin had a protective effect on benzoate-degrading cells of R. opacus 1CP. The strategy for cells survival under unfavorable conditions was formulated, which included decreased cell size/volume and formation of densely-packed cell conglomerates, in which the cells are embedded into a common matrix. Formation of conglomerates may probably be considered as a means for protecting the cells against aggressive environmental factors. The multicellular conglomerate structure and the matrix material impede the penetration of toxic substances into the conglomerates, promoting survival of the cells located inside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebi, H., Catalase in vitro, Methods Enzymol., 1984, vol. 105, pp. 121–126.

    Article  CAS  PubMed  Google Scholar 

  • Benndorf, D. and Babel W., Assimilatory detoxification of herbicides by Delftia acidovorans MC1: induction of two chlorocatechol 1,2-dioxygenases as a response to chemostress, Microbiology (UK), 2002, vol. 148, pp. 2883–2888.

    Article  CAS  Google Scholar 

  • Biryukova, E.N., Medentsev, A.G., Arinbasarova, A.Yu., and Akimenko V.K., Tolerance of the yeast Yarrowia lipolytica to oxidative stress, Microbiology (Moscow), 2006, vol. 75, no. 3, pp. 243–247.

    Article  CAS  Google Scholar 

  • Bligh, E. and Dyer, W.J., A rapid method of total lipid extraction and purification, Can. J. Biochem., 1959, vol. 8, pp. 911–917.

    Google Scholar 

  • Christie, W.W., Preparation of ester derivatives of fatty acids for chromatographic analysis, in Advances in Lipid Methodology, Christie, W.W., Ed., Bridgwater: Oily Press, 1993, vol. 2, pp. 69–111.

    Google Scholar 

  • Cushnie, T.P. and Lamb, A.J., Antimicrobial activity of flavonoids, Int. J. Antimicrob. Agents, 2005, vol. 26, pp. 343–356.

    Article  CAS  PubMed  Google Scholar 

  • de Carvalho, C.C.C.R., Marques, M.P.C., Hachicho, N., and Heipieper, H.J., Rapid adaptation of Rhodococcus erythropolis cells to salt stress by synthesizing polyunsaturated fatty acids, Appl. Microbiol. Biotechnol., 2014, vol. 98, pp. 5599–5606. doi 10.1007/s00253-014-5549-2

    PubMed  Google Scholar 

  • Farr, S.B. and Kogoma, T., Oxidative stress responses in Escherichia coli and Salmonella typhimurium, Microbiol. Rev., 1991, vol. 55, pp. 561–585.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fetzner, S., Ring-cleaving dioxygenases with a cupin fold, Appl. Environ. Microbiol., 2012, vol. 78, no. 8, pp. 2505–2514. doi 10.1128/AEM.07651-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaur, R. and Khare, S.K., Cellular response mechanisms in Pseudomonas aeruginosa PseA during growth in organic solvents, Lett. Appl. Microbiol., 2009, vol. 49, no. 3, pp. 372–377.

    Article  CAS  PubMed  Google Scholar 

  • Gorlatov, S.N., Maltseva, O.V., Shevchenko, V.I., and Golovleva, L.A., Degradation of chlorophenols by a culture of Rhodococcus erythropolis, Microbiology (Moscow), 1989, vol. 58, pp. 647–651.

    Google Scholar 

  • Habib, D., Chaudhary, M.F., and Zia, M., The study of ascorbate peroxidase, catalase and peroxidase during in vitro regeneration of Argyrolobium roseum, Appl. Biochem. Biotechnol., 2014, vol. 172, no. 2, pp. 1070–1084.

    Article  CAS  PubMed  Google Scholar 

  • Harwood, M., Danielewska-Nikiel, B., Borzelleca, J.F., Flamm, G.W., Williams, G.M., and Lines, T.C., A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties, Food Chem. Toxicol., 2007, vol. 45, no. 11, pp. 2179–2205.

    Article  CAS  PubMed  Google Scholar 

  • Jakab, Á., Antal, K., Kiss, Á., Emri, T., and Pócsi, I., Increased oxidative stress tolerance results in general stress tolerance in Candida albicans independently of stress-elicited morphological transitions, Folia Microbiol., 2014, vol. 59, pp. 333–340. doi 10.1007/s12223-014-0305-7

    Article  CAS  Google Scholar 

  • Kim, J., Cho, Y., Jang, I.-A., and Park, W., Molecular mechanism involved in the response to hydrogen peroxide stress in Acinetobacter oleivorans DR1, Appl. Microbiol. Biotechnol., 2015, vol. 99, no. 24, pp. 10611–10626. doi 10.1007/s00253-015-6914-5

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. and Park, W., Oxidative stress response in Pseudomonas putida, Appl. Microbiol. Biotechnol., 2014, vol. 98, pp. 6933–6946. doi 10.1007/s00253-014-5883-4

    Article  CAS  PubMed  Google Scholar 

  • Korshunov, S. and Imlay, J.A., Two sources of endogenous hydrogen peroxide in Escherichia coli, Mol. Microbiol., 2010, vol. 75, pp. 1389–1401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostyuk, V.A., Potapovich, A.I., and Kovaleva Zh.V., A simple, sensitive assay for determination of superoxide dismutase activity based on reaction of quercetin oxidation, Vopr. Med. Khim., (Moscow), 1990, vol. 26, no. 2, pp. 88–91.

    Google Scholar 

  • LeBlanc, J.C., Goncalves, E.R., and Mohn, W.W., Global response to desiccation stress in the soil actinomycete Rhodococcus jostii RHA1, Appl. Environ. Microbiol., 2008, vol. 74, no. 9, pp. 2627–2636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Hugenholtz, J., Abee, T., and Molenaar, D., Glutatione protects Lactococcus lactis against oxidative stress, Appl. Environ. Microbiol., 2003, vol. 69, no. 10, pp. 5739–5745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, H., Zhao, X., Guo, M., Liu, H., and Zheng, Z., Growth and metabolism of Beauveria bassiana spores and mycelia, BMC Microbiol., 2015, vol. 15, pp. 267. doi 10.1186/s12866-015-0592-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Wisniewski, M., Droby, S., Norelli, J., Hershkovitz, V., Tian, S., and Farrell, R., Increase in antioxidant gene transcripts, stress tolerance and biocontrol efficacy of Candida oleophila following sublethal oxidative stress exposure, FEMS Microbiol. Ecol., 2012, vol. 80, pp. 578–590.

    Article  CAS  PubMed  Google Scholar 

  • Loiko, N.G., Kryazhevskikh, N.A., Suzina, N.E., Demkina, E.V., Muratova, A.Yu., Turkovskaya, O.V., Kozlova, A.N., Galchenko, V.F., and El’-Registan, G.I., Resting forms of Sinorhizobium meliloti, Microbiology (Moscow), 2011, vol. 80, no. 4, pp. 472–482.

    Article  CAS  Google Scholar 

  • Moreno-Forero, S.K., Rojas, E., Beggah, S., and van der Meer, J.R., Comparison of differential gene expression to water stress among bacteria with relevant pollutant-degradation properties, Environ. Microbiol. Rep., 2016, vol. 8, no. 1, pp. 91–102. doi 10.1111/1758-2229.12356

    Article  CAS  PubMed  Google Scholar 

  • Mulyukin, A.L., Suzina, N.E., Mel’nikov, V.G., Gal’chenko, V.F., and El’-Registan, G.I., Dormant state and phenotypic variability of Staphylococcus aureus and Corynebacterium pseudodiphtheriticum, Microbiology (Moscow), 2014, vol. 83, no. 1, pp. 149–159.

    Article  CAS  Google Scholar 

  • Periasamy, R., Kalal, I.G., Krishnaswamy, R., and Viswanadha, V.P., Quercetin protects human peripheral blood mononuclear cells from OTA-induced oxidative stress, genotoxicity, and inflammation, Environm. Toxicol., 2016, vol. 31, no. 7, pp. 855–865.: doi 10.1002/tox.22096

    Article  CAS  Google Scholar 

  • Plaper, A., Golob, M., Hafner, I., Oblak, M., Solmajer, T., and Jerala, R., Characterization of quercetin binding site on DNA gyrase, Biochem. Biophys. Res. Commun., 2003, vol. 306, no. 2, pp. 530–536. doi 10.1016/S0006-291X(03)01006-4

    Article  CAS  PubMed  Google Scholar 

  • Reynolds, E., The use of lead citrate at high pH as an electron-opaque stain in electron microscopy, J. Cell Biol., 1963, vol. 17, pp. 208–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solyanikova, I.P., Emelyanova, E.V., Borzova, O.V., and Golovleva, L.A., Benzoate degradation by Rhodococcus opacus 1CP after a dormancy: characterization of dioxygenases involved in the process, J. Environ. Sci. Health. Part B., 2016, vol. 51, no. 3, pp. 182–191. doi 10.1080/03601234.2015.1108814

    Article  CAS  Google Scholar 

  • Solyanikova, I.P., Emelyanova, E.V., Shumkova, E.S., Egorova, D.O., Korsakova, E.S., Plotnikova, E.G., and Golovleva, L.A., Peculiarities of the degradation of benzoate and its chloro-and hydroxy-substituted analogs by actinobacteria, Int. Biodeterior. Biodegrad., 2015, vol. 100, pp. 155–164.

    Article  CAS  Google Scholar 

  • Solyanikova, I.P., Borzova, O.V., Emelyanova, E.V., Shumkova, E.S., Prisyazhnaya, N.V., Plotnikova, E.G., and Golovleva, L.A., Dioxygenases of chlorobiphenyldegrading species Rhodococcus wratislaviensis G10 and chlorophenol-degrading species Rhodococcus opacus 1CP induced in benzoate-grown cells and genes potentially involved in these processes, Biochemistry (Moscow), 2016, vol. 81, no. 9, pp. 986–999.

    Article  CAS  Google Scholar 

  • Storz, G. and Imlay, J.A., Oxidative stress, Curr. Opin. Microbiol., 1999, vol. 2, pp. 188–194.

    Article  CAS  PubMed  Google Scholar 

  • Tischler, D., Kermer, R., Gröning, J.A., Kaschabek, S.R., van Berke, W.J., and Schlömann, M., StyA1 and StyA2B from Rhodococcus opacus 1CP: a multifunctional styrene monooxygenase system, J. Bacteriol., 2010, vol. 192, no. 19, pp. 5220–5227. doi 10.1128/JB.00723-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbano, S.B., Capua, C.D., Cortez, N., Farías, M.E., and Alvarez, H.M., Triacylglycerol accumulation and oxidative stress in Rhodococcus species: differential effects of pro-oxidants on lipid metabolism, Extremophiles, 2014, vol. 18, no. 2, pp. 375–384.

    Article  CAS  PubMed  Google Scholar 

  • Uzilday, B., Turkan, I., Ozgur, R., and Sekmen, A.H., Strategies of ROS regulation and antioxidant defense during transition from C3 to C4 photosynthesis in the genus Flaveria under PEG-induced osmotic stress, J. Plant Physiol., 2014, vol. 171, pp. 65–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Golovleva.

Additional information

Original Russian Text © I.P. Solyanikova, N.E. Suzina, E.V. Emelyanova, V.N. Polivtseva, A.B. Pshenichnikova, A.G. Lobanok, L.A. Golovleva, 2017, published in Mikrobiologiya, 2017, Vol. 86, No. 2, pp. 188–200.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solyanikova, I.P., Suzina, N.E., Emelyanova, E.V. et al. Morphological, physiological, and biochemical characteristics of a benzoate-degrading strain Rhodococcus opacus 1CP under stress conditions. Microbiology 86, 202–212 (2017). https://doi.org/10.1134/S0026261717020199

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261717020199

Keywords

Navigation