Skip to main content

Advertisement

Log in

Human intestinal microbiota: Role in development and functioning of the nervous system

  • Reviews
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Recent results related to investigation of the role of intestinal microbiota (IM) in development and functioning of the human nervous system are discussed. The role of the microbiota in bidirectional communication between the gastrointestinal tract and the central nervous system is considered. Special attention is paid to the primary IM of infants, which is actively involved in formation of immune and other physiological mechanisms, including the nervous system, and is responsible for the subsequent general and psychical health of a human. The results of research on ability of the commensal intestinal microflora to produce neuroactive compounds, including neurotransmitters, short- and long-chain fatty acids, γ-aminobutyric acid, etc., are summarized. These compounds may have a considerable effect on development and functioning of the central nervous system, including the brain. Research on various animal models is discussed, including investigation of IM effect on behavior, learning abilities and memory, anxiety and depression levels, reaction to emotional stimuli, and stress resistance. A special section deals with probiotic bacteria, which are presently considered as psychobiotics with preventive and therapeutic potential for treatment of neurological and neurophysiological disorders. Development of new paradigms and concepts, rejection of some classical concepts of neurobiology is presently the key condition for the future breakthrough in investigation of human nervous activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, G. and Maes, M., The gut–brain axis: the role of melatonin in linking psychiatric, inflammatory and neurodegenerative conditions, Adv. Integr. Med., 2015, vol. 2, pp. 31–37.

    Article  Google Scholar 

  • Aoki, H., Furuya, Y., Endo, Y., and Fujimoto, K., Effect of gamma-aminobutyric acid-enriched tempeh-like fermented soybean (GABA-tempeh) on the blood pressure, Biosci. Biotechnol. Biochem., 2003, vol. 67, pp. 1806–1808.

    Article  CAS  PubMed  Google Scholar 

  • Aroniadis, O.C. and Brandt, L.J., Fecal microbiota transplantation: past, present and future, Curr. Opin. Gastroenterol., 2013, vol. 29, pp. 79–84.

    Article  PubMed  Google Scholar 

  • Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D.R., Fernandes, G.R., Tap, J., Bruls, T., Batto, J.-M., Bertalan, M., Borruel, N., Casellas, F., Fernandez, L., Gautier, L., et al., Enterotypes of the human gut microbiome, Nature, 2011, vol. 473, pp. 174–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auteri, M., Zizzo, M.G., and Serio, R., GABA and GABA receptors in the gastrointestinal tract: from motility to inflammation, Pharmacol. Res., 2015, vol. 93, pp. 11–21.

    Article  CAS  PubMed  Google Scholar 

  • Azad, M.B., Konya, T., Maughan, H., Guttman, D.S., Field, C.J., Chari, R.S., Sears, M.R., Becker, A.B., Scott, J.A., and Kozyrskyj, A.L., Investigators C.S. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months, CMAJ, 2013, vol. 185, pp. 385–394.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey, M.T., Dowd, S. E., Galley, J.D., Hufnagle, A.R., Allen, R.G., and Lyte, M., Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation, Brain Behav. Immun., 2011, vol. 25, pp. 397–407.

    Article  CAS  PubMed  Google Scholar 

  • Barrett, E.R.P., O’Toole, P.W., Fitzgerald, G.F., and Stanton, C., Aminobutyric acid production by culturable bacteria from the human intestine, J. Appl. Microbiol., 2012, vol. 113, pp. 411–417.

    Article  CAS  PubMed  Google Scholar 

  • Berger, M., Gray, J.A., and Roth, B.L., The expanded biology of serotonin, Annu. Rev. Med., 2009, vol. 60, pp. 355–366.

    Article  CAS  PubMed  Google Scholar 

  • Bhavsar, A.P., Guttman, J.A., and Finlay, B.B., Manipulation of host-cell pathways by bacterial pathogens, Nature, 2007, vol. 449, pp. 827–834.

    Article  CAS  PubMed  Google Scholar 

  • Biagi, E., Nylund, L., Candela, M., Ostan, R., Bucci, L., Pini, E., Nikkila, J., Monti, D., Satokari, R., Franceschi, C., Brigidi, P., and De Vos W., Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians, PLoS One, 2010, vol. 5, pp. 106–167.

    Google Scholar 

  • Biasucci, G., Benenati, B., Morelli, L., Bessi, E., and Boehm, G., Cesarean delivery may affect the early biodiversity of intestinal bacteria, J. Nutr., 2008, vol. 138, pp. 1796–1800.

    Google Scholar 

  • Borre, Y.E., Moloney, R.D., Clarke, G., Dinan, T.G., and Cryan, J.F., The impact of microbiota on brain and behavior: mechanisms and therapeutic potential, Adv. Exper. Med. Biol., 2014, vol. 817, pp. 373–403.

    Article  CAS  Google Scholar 

  • Braegger, C., Chmielewska, A., Decsi, T., Kolacek, S., Mihatsch, W., Moreno, L., Piescik, M., Puntis, J., Shamir, R., Szajewska, H., Turck, D., and van Goudoever, J., Supplementation of infant formula with probiotics and/or prebiotics: a systematic review and comment by the ESPGHAN committee on nutrition, J. Pediatr. Gastroenterol. Nutr., 2011, vol. 52, pp. 238–250.

    Article  PubMed  Google Scholar 

  • Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Toth, M., Korecka, A., Bakocevic, N., Ng, L.G., Kundu, P., Gulyas, B., Halldin, C., Hultenby, K., Nilsson, H., Hebert, H., Volpe, B.T., Diamond, B., and Pettersson, S., The gut microbiota influences blood-brain barrier permeability in mice, Sci. Transl. Med., 2014, vol. 6, pp. 263ra158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bravo, J.A., Forsythe, P., Chew, M.V., Escaravage, E., Savignac, H.M., Dinan, T.G., Bienenstock, J., and Cryan, J.F., Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, pp. 16050–16055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bravo, J.A., Julio-Pieper, M., Forsythe, P., Kunze, W., Dinan, T.G., Bienenstock, J., and Cryan, J.F., Communication between gastrointestinal bacteria and the nervous system, Curr. Opin. Pharmacol., 2012, vol. 12, pp. 667–672.

    Article  CAS  PubMed  Google Scholar 

  • Brown, J.M. and Hazen, S.L., The gut microbial endocrine organ: bacterially-derived signals driving cardiometabolic diseases, Annu. Rev. Med., 2015, vol. 66, pp. 343–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budrene, E.O. and Berg, H.C., Dynamics of formation of symmetrical patterns by chemotactic bacteria, Nature, 2002, vol. 376, pp. 49–53.

    Article  Google Scholar 

  • Burokas, A., Moloney, R.D., Dinan, T.G., and Cryan, J.F., Microbiota regulation of the mammalian gut brain axis, Adv. Appl. Microbiol., 2015, vol. 91, pp. 1–62.

    Article  PubMed  Google Scholar 

  • Caicedo, R.A., Schanler, R.J., Li, N., and Neu, J., The developing intestinal ecosystem: implications for the neonate, Pediatr. Res., 2005, vol. 58, pp. 625–628.

    Article  PubMed  Google Scholar 

  • Candido, E.P., Reeves, R., and Davie, J.R., Sodium butyrate inhibits histone deacetylation in cultured cells, Cell, 1978, vol. 14, pp. 105–113.

    Article  CAS  PubMed  Google Scholar 

  • Castanie-Cornet, M.-P., Penfound, T.A., Smith, D., Elliott, J.F., and Foster, J.W., Control of acid resistance in Escherichia coli, J. Bacteriol., 1999, vol. 181, pp. 3525–3535.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cherubini, E. and North, R.A., Actions of gamma-aminobutyric acid on neurones of guinea-pig myenteric plexus, Br. J. Pharmacol., 1984, vol. 82, pp. 93–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho, Y.R., Chang, J.Y., and Chang, H.C., Production of gamma-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells, J. Microbiol. Biotechnol., 2007, vol. 17, pp. 104–109.

    CAS  PubMed  Google Scholar 

  • Clarke, G., Grenham, S., Scully, P., Fitzgerald, P., Moloney, R.D., Shanahan, F., Dinan, T.G., and Cryan, J.F., The microbiome–gut–brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner, Mol. Psychiatry, 2013, vol. 18, pp. 666–673.

    Article  CAS  PubMed  Google Scholar 

  • Clarke, G., Stilling, R.M., Kennedy, P.J., Stanton, C., Cryan, J.F., and Dinan, T.G., Gut microbiota: the neglected endocrine organ, Mol. Endocrinol., 2014, vol. 28, pp. 1221–1238.

    Article  PubMed  CAS  Google Scholar 

  • Collins, S.M. and Bercik, P., Gut microbiota: intestinal bacteria influence brain activity in healthy humans, Nat. Rev. Gastroenterol. Hepatol., 2013, vol. 10, pp. 326–327.

    Article  PubMed  Google Scholar 

  • Collins, S.M., Surette, M., and Bercik, P., The interplay between the intestinal microbiota and the brain, Nat. Rev. Microbiol., 2012, vol. 10, pp. 735–742.

    Article  CAS  PubMed  Google Scholar 

  • Cryan, J.F. and Dinan, T.G., Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour, Nat. Rev. Neurosci., 2012, vol. 13, pp. 701–712.

    Article  CAS  PubMed  Google Scholar 

  • Culotta, D.E. and Koshland, J., NO News is good news, Science, 1992, vol. 258, pp. 1862–1865.

    Article  CAS  PubMed  Google Scholar 

  • Czapinski, P., Blaszczyk, B., and Czuczwar, S.J., Mechanisms of action of antiepileptic drugs, Curr. Top. Med. Chem., 2005, vol. 5, pp. 3–14.

    Article  CAS  PubMed  Google Scholar 

  • Danilenko, V.N., Averina, O.V., and D’yachkova, M.S., Strains Bifidobacterium adolescentis 150 and Bifidobacterium angulatum GT102 producing gamma-aminobutyric acid, Application for RFPatent no. 2015122505, 2015.

    Google Scholar 

  • Dantzer, R., Konsman, J.P., Bluthe, R.M., and Kelley K.W., Neural and humoral pathways of communication from the immune system to the brain: parallel or convergent?, Auton. Neurosci., 2000, vol. 85, pp. 60–65.

    Article  CAS  PubMed  Google Scholar 

  • Davie, J.R., Inhibition of histone deacetylase activity by butyrate, J. Nutr., 2003, vol. 133, pp. 2485–2493.

    Google Scholar 

  • de Lartigue, G., de La Serre, C.B., and Raybould, H.E., Vagal afferent neurons in high fat diet-induced obesity; intestinal microflora, gut inflammation and cholecystokinin, Physiol. Behav., 2011, vol. 105. P. 100–105.

    Article  PubMed  CAS  Google Scholar 

  • De Vadder, F., Kovatcheva-Datchary, P., Goncalves, D., Vinera, J., Zitoun, C., Duchampt, A., Bäckhed, F., and Mithieux, G., Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits, Cell, 2014, vol. 156, pp. 84–96.

    Article  PubMed  CAS  Google Scholar 

  • Desbonnet, L., Garrett, L., Clarke, G., Bienenstock, J., and Dinan, T.G., The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat, J. Psychiatr. Res., 2008, vol. 43, pp. 164–174.

    Article  PubMed  Google Scholar 

  • Desbonnet, L., Garrett, L., Clarke, G., Kiely, B., Cryan, J.F., and Dinan, T.G., Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression, Neurosci., 2010, vol. 170, pp. 1179–1188.

    Article  CAS  Google Scholar 

  • Diaz Heijtz, R., Wang, S., Anuar, F., Qian, Y., Björkholm, B., Samuelsson, A., Hibberd, M.L., Forssberg, H., and Pettersson, S., Normal gut microbiota modulates brain development and behavior, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 3047–3052.

    Article  PubMed  Google Scholar 

  • Dinan, T.G., Stanton, C., and Cryan, J.F., Psychobiotics: a novel class of psychotropic, Biol. Psychiatry, 2013, vol. 74, pp. 720–726.

    Article  CAS  PubMed  Google Scholar 

  • Dinan, T.G., Stilling, R.M., Stanton, C., and Cryan J.F., Collective unconscious: how gut microbes shape human behavior, J. Psychiatr. Res., 2015, vol. 63, pp. 1–9.

    Article  PubMed  Google Scholar 

  • Dominguez-Bello, M.G., Costello, E.K., Contreras, M., Magris, M., Hidalgo, G., Fierer, N., and Knight, R., Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, pp. 11971–11975.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dror, D.K. and Allen, L.H., Effect of vitamin B12 deficiency on neurodevelopment in infants: current knowledge and possible mechanisms, Nutr. Rev., 2008, vol. 66, pp. 250–255.

    Article  PubMed  Google Scholar 

  • Dyachkova, M.S., Klimina, K.M., Kovtun, A.S., Zakharevich, N.V., Nezametdinova, V.Z., Averina, O.V., and Danilenko, V.N., Draft genome sequences of Bifidobacterium angulatum GT102 and Bifidobacterium adolescentis 150: focusing on the genes potentially involved in the gut-brain axis, Genome Announcements, 2015, vol. 3, no. 4. doi 10.1128/genomeA.00709-15

  • Eckburg, P.B., Bik, E.M., Bernstein, C.N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S.R., Nelson, K.E., and Relman, D.A., Diversity of the human intestinal microbial flora, Science, 2005, vol. 308, pp. 1635–1638.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eisenberg, T., Knauer, H., Schauer, A., Büttner, S., Ruckenstuhl, C., Carmona-Gutierrez, D., Ring, J., Schroeder, S., Magnes, C., Antonacci, L., Fussi, H., Deszcz, L., Hartl, R., Schraml, E., Criollo, A., et al., Induction of autophagy by spermidine promotes longevity, Nat. Cell Biol., 2009, vol. 11, pp. 1305–1314.

    Article  CAS  PubMed  Google Scholar 

  • Farmer, A.D., Randall, H.A., and Aziz, Q., It’s a gut feeling: how the gut microbiota affects the state of mind, J. Physiol., 2014, vol. 592, pp. 2981–2988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez, L., Langa, S., Martin, V., Maldonado, A., Jimenez, E., Martin, R., and Rodriguez, J.M., The human milk microbiota: origin and potential roles in health and disease, Pharmacol. Res. 2013, vol. 69, pp. 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Finegold, S.M., Molitoris, D., Song, Y., Liu, C., Vaisanen, M.L., Bolte, E., McTeague, M., Sandler, R., Wexler, H., Marlowe, E.M., Collins, M.D., Lawson, P.A., Summanen, P., Baysallar, M., Tomzynski, T.J., et al., Gastrointestinal microflora studies in late-onset autism, Clin. Infect. Dis., 2002, vol. 35, pp. 6–16.

    Article  Google Scholar 

  • Flint, H.J., Scott, K.P., Louis, P., and Duncan, S.H., The role of the gut microbiota in nutrition and health, Nature Rev. Gastroenterol. Hepatol., 2012, vol. 9, pp. 577–589.

    Article  CAS  Google Scholar 

  • Furness, J.B., The Enteric Nervous System, Malden: Blackwell, 2006.

    Google Scholar 

  • Gardini, F., Rossi, F., Rizotti, L., Torriani, S., Grazia, L., Chiavari, C., Coloretti, F., and Tabanelli, G., Role of Streptococcus thermophilus PRI60 in histamine accumulation in cheese, Int. Dairy J., 2012, vol. 27, pp. 71–76.

    Article  CAS  Google Scholar 

  • Gareau, M.G., Wine, E., Rodrigues, D.M., Cho, J.H., Whary, M.T., Philpott, D.J., Macqueen, G., and Sherman, P.M., Bacterial infection causes stress-induced memory dysfunction in mice, Gut, 2011, vol. 60, pp. 307–317.

    Article  PubMed  Google Scholar 

  • Gershon, M.D. and Tack, J., The serotonin signaling system: from basic understanding to drug development for functional GI disorders, Gastroenterol., 2007, vol. 132, pp. 397–414.

    Article  CAS  Google Scholar 

  • Gershon, M.D., 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract, Curr. Opin. Endocrinol. Diabetes Obes., 2013, vol. 20, pp. 14–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goehler, L.E., Park, S.M., Opitz, N., Lyte, M., and Gaykema, R.P.A., Campylobacter jejuni infection increases anxiety-like behavior in the holeboard: possible anatomical substrates for viscerosensory modulation of exploratory behavior, Brain Behav. Immun., 2008, vol. 22, pp. 354–366.

    Article  CAS  PubMed  Google Scholar 

  • Gotesmann, C., GABA mechanisms and sleep, Neurosci., 2002, vol. 111, pp. 231–239.

    Article  Google Scholar 

  • Grenham, S., Clarke, G., Cryan, J.F., and Dinan, T.G., Brain-gut-microbe communication in health and disease, Front. Physiol., 2011, vol. 2, pp. 1–15.

    Article  Google Scholar 

  • Gritz, E.C. and Bhandari, V., The human neonatal gut microbiome: a brief review, Front. Pediatr., 2015, vol. 3, pp. 1–12.

    Google Scholar 

  • Grzeskowiak, L., Grönlund, M.-M., Beckmann, C., Salminen, S., von Berg, A., and Isolauri E., The impact of perinatal probiotic intervention on gut microbiota: doubleblind placebo-controlled trials in Finland and Germany, Anaerobe, 2012, vol. 18, pp. 7–13.

    Article  PubMed  Google Scholar 

  • Gupta, V.K., Scheunemann, L., Eisenberg, T., Mertel, S., Bhukel, A., Koemans, T.S., Kramer, J.M., Liu, K.S., Schroeder, S., Stunnenberg, H.G., Sinner, F., Magnes, C., Pieber, T.R., Dipt, S., Fiala, A., et al., Restoring polyamines protects from age-induced memory impairment in an autophagydependent manner, Nat. Neurosci., 2013, vol. 16, pp. 1453–1460.

    Article  CAS  PubMed  Google Scholar 

  • Haduch, A., Bromek, E., Wójcikowski, J., Golembiowska, K., and Daniel, W.A., Melatonin supports CYP2D-mediated serotonin synthesis in the brain, Drug Metab. Disposit., 2016, vol. 44, pp. 445–452.

    Article  Google Scholar 

  • Hagiwara, H., Seki, T., and Ariga, T., The effect of pre-germinated brown rice intake on blood glucose and PAI-1 levels in streptozotocin-induced diabetic rats, Biosci. Biotechnol. Biochem., 2004, vol. 68, pp. 444–447.

    Article  CAS  PubMed  Google Scholar 

  • Halasz, A., Barath, A., Simon-Sarkadi, L., and Holzapfel, W., Biogenic amines and their production by microorganisms in food, Trends Food Sci. Technol., 1994, vol. 5, pp. 42–49.

    Article  CAS  Google Scholar 

  • Heijtz, R.D., Wan, S., Anuard, F., Qia, Y., Björkholm, B., Samuelsson, A., Hibberd, M.L., Forssberg, H., and Pettersson, S., Normal gut microbiota modulates brain development and behavior, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, pp. 3047–3052.

    Article  CAS  PubMed Central  Google Scholar 

  • Hemarajata, P. and Versalovic, J., Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation, Therap. Advan. Gastroenterol., 2013, vol. 6, pp. 39–51.

    Article  CAS  Google Scholar 

  • Horiuchi, Y., Kimura, R., Kato, N., Fujii, T., Seki, M., Endo, T., Kato, T., and Kawashima, K., Evolutional study on acetylcholine expression, Life Sci., 2003, vol. 72, pp. 1745–1756.

    Article  CAS  PubMed  Google Scholar 

  • Hornig, M., The role of microbes and autoimmunity in the pathogenesis of neuropsychiatric illness, Curr. Opin. Rheumatol., 2013, vol. 25, pp. 488–795.

    Article  CAS  PubMed  Google Scholar 

  • Hsu, S.C., Johansson, K.R., and Donahue, M.J., The bacterial flora of the intestine of Ascaris suum and 5-hydroxytryptamine production, J. Parasitol., 1986, vol. 72, pp. 545–549.

    Article  CAS  PubMed  Google Scholar 

  • Hueston, C.M. and Deak, T., The inflamed axis: the interaction between stress, hormones, and the expression of inflammatory-related genes within key structures comprising the hypothalamic-pituitary-adrenal axis, Physiol. Behav., 2014, vol. 124, pp. 77–91.

    CAS  PubMed  Google Scholar 

  • Jakobs, C., Jaeken, J., and Gibson, K.M., Inherited disorders of GABA metabolism, Inherit. Metab. Dis., 1993, vol. 16, pp. 704–715.

    Article  CAS  Google Scholar 

  • Jasarevic, E., Rodgers, A.B., and Bale, T.L., A novel role for maternal stress and microbial transmission in early life programming and neurodevelopment, Neurobiology of Stress, 2015, vol. 1, pp. 81–88.

    Article  PubMed  Google Scholar 

  • Jiménez, E., Marín, M.L., Martín, R., Odriozola, J.M., Olivares, M., Xaus, J., Fernández, L., and Rodríguez, J.M., Is meconium from healthy newborns actually sterile?, Res. Microbiol., 2008, vol. 159, pp. 187–193.

    Article  PubMed  CAS  Google Scholar 

  • Kapoor, A., Kostaki, A., Janus, C., and Matthews, S.G., The effects of prenatal stress on learning in adult offspring is dependent on the timing of the stressor, Behav. Brain Res., 2009, vol. 197, pp. 144–149.

    Article  PubMed  Google Scholar 

  • Kelsen, J.R. and Wu, G.D., The gut microbiota, environment and diseases of modern society, Gut Microbes, 2012, vol. 3, pp. 374–382.

    Article  PubMed  Google Scholar 

  • Khanna, S. and Tosh, P.K., A clinician’s primer on the role of the microbiome in human health and disease, Mayo Clin. Proc., 2014, vol. 89, pp. 107–114.

    Article  CAS  PubMed  Google Scholar 

  • Kishino, S., Ogawa, J., Omura, Y., Matsumura, K., and Shimizu, S., Conjugated linoleic acid production from linoleic acid by lactic acid bacteria, J. Am. Oil Chem. Soc., 2002, vol. 79, pp. 159–163.

    Article  CAS  Google Scholar 

  • Kobayashi, K., Role of catecholamine signaling in brain and nervous system functions: new insights from mouse molecular genetic study, J. Investig. Dermatol. Symp. Proc., 2001, vol. 6, pp. 115–121.

    Article  CAS  PubMed  Google Scholar 

  • Koenig, J.E., Spor, A., Scalfone, N., Fricker, A.D., Stombaugh, J., Knight, R., Angenent, L.T., and Ley, R.E., Succession of microbial consortia in the developing infant gut microbiome, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, pp. 4578–4585.

    Article  CAS  PubMed  Google Scholar 

  • Kovtun, A.S., Zakharevich, N.V., Averina, O.V., and Danienko, V.N., Development of methods for analysis of human intestinal metagenomes for identification and characterization of the composition of the neuromodulator genes, Probl. Med. Mikol., 2016, vol. 18, no. 2 p. e76.

    Google Scholar 

  • Krantis, A., GABA in the mammalian enteric nervous system, News Physiol. Sci., 2000, vol. 15, pp. 284–290.

    CAS  PubMed  Google Scholar 

  • Kunze, W.A., Mao, Y.K., Wang, B., Huizingam, J.D., Ma, X., Forsythe, P., and Bienenstock, J., Lactobacillus reuteri enhances excitability of colonic AHneurons by inhibiting calcium-dependent potassium channel opening, J. Cell Mol. Med., 2009, vol. 13, pp. 2261–2270.

    Article  PubMed  Google Scholar 

  • Ladero, V., Fernandez, M., and Alvarez, M.A., Isolation and identification of tyramine-producing enterococci from human fecal samples, Can. J. Microbiol., 2009, vol. 55, pp. 215–218.

    Article  CAS  PubMed  Google Scholar 

  • Latham, T., Mackay, L., Sproul, D., Karim, M., Culley, J., Harrison, D.J., Hayward, L., Langridge-Smith, P., Gilbert, N., and Ramsahoye, B.H., Lactate,a product of glycolytic metabolism,inhibits histone deacetylase activity and promotes changes in gene expression, Nucl. Acids Res., 2012, vol. 40, pp. 4794–4803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H. and Cao, Y., Lactic acid bacterial cell factories for gamma-aminobutyric acid, Amino Acids, 2010, vol. 39, pp. 1107–1116.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., Gao, D., Cao, Y., and Xu, H., A high gamma-aminobutyric acid-producing Lactobacillus brevis isolated from Chinese traditional paocai, Ann. Microbiol., 2008, vol. 58, pp. 649–653.

    Article  CAS  Google Scholar 

  • Lim, S.D., Yoo, S.H., Yang, H.D., Kim, S.K., and Park, S.Y., GABA productivity in yoghurt fermented by freeze dried culture preparations of Lactobacillus acidophilus RMK567, Korean J. Food Sci. Anim. Resour., 2009, vol. 29, pp. 437–444.

    Article  Google Scholar 

  • Lin, C.-S., Tsai, H.-C., Lin, C.-M., Huang, C.-Y.

  • Kung, H.-F., and Tsai, Y.-H., Histamine content and histamine-forming bacteria in mahi-mahi (Coryphaea hippurus) fillets and dried products, Food Control, 2014, vol. 42, pp. 165–171.

    Article  CAS  Google Scholar 

  • Liu, Y.-W., Liu, W.-H., Wu, C.-C., Juan, Y.-C., Wu, Y.-C., Tsai, H.-P., Wang, S., and Tsai, Y.-C., Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naïve adult mice, Brain Res., 2016, vol. 15, pp. 1–12.

    Article  CAS  Google Scholar 

  • Lorencova, E., Bunkova, L., Matoulkova, D., Drab, V., Pleva, P., Kuban, V., and Bunka, F., Production of biogenic amines by lactic acid bacteria and bifidobacteria isolated from dairy products and beer, Int. J. Food Sci. Technol., 2012, vol. 47, pp. 2086–2091.

    Article  CAS  Google Scholar 

  • Lucas, P., Landete, J., Coton, M., Coton, E., and Lonvaud-Funel, A., The tyrosine decarboxylase operon of Lactobacillus brevis IOEB 9809: characterization and conservation in tyramine-producing bacteria, FEMS Microbiol. Lett., 2003, vol. 229, pp. 65–71.

    Article  CAS  PubMed  Google Scholar 

  • Luczynski, P., McVey Neufeld, K.-A., Seira Oriach, C., Clarke, G., Dinan, T.G., and Cryan, J.F., Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior, Int. J. Neuropsychopharmacol., 2016, pp. 1–17. doi 10.1093/ijnp/pyw020

    Google Scholar 

  • Luo, J., Wang, T., Liang, S., Hu, X., Li, W., and Jin, F., Ingestion of Lactobacillus strain reduces anxiety and improves cognitive function in the hyperammonemia rat, Sci. China Life Sci., vol. 57, pp. 327–335.

  • Lupien, S.J., McEwen, B.S., Gunnar, M.R., and Heim, C., Effects of stress throughout the lifespan on the brain, behaviour and cognition, Nature Rev. Neurosci., 2009, vol. 10, pp. 434–445.

    Article  CAS  Google Scholar 

  • Lyte, M. and Cryan, J.F., Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease, in Advances in Experimental Medicine and Biology, Subseries: Microbial Endocrinology, New York: Springer., 2014, vol. 817.

    Google Scholar 

  • Lyte, M. and Ernst, S. Catecholamine induced growth of gram negative bacteria, Life Sci., 1992, vol. 50, pp. 203–212.

  • Lyte, M., Li, W., Opitz, N., Gaykema, R.P.A., and Goehler, L.E., Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium, Physiol. Behav., 2006, vol. 89, pp. 350–357.

    Article  CAS  PubMed  Google Scholar 

  • Lyte, M., Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics, Bioessays, 2011, vol. 33, pp. 574–581.

    Article  CAS  PubMed  Google Scholar 

  • Lyte, M., The role of microbial endocrinology in infectious disease, J. Endocrinol., 1993, vol. 137, pp. 343–345.

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane, G.T. and Macfarlane, S., Bacteria, colonic fermentation, and gastrointestinal health, J. of AOAC International, 2012, vol. 95, no 1, pp. 50–60.

    CAS  Google Scholar 

  • Makino, H., Martin, R., Ishikawa, E., Gawad, A., Kubota, H., Sakai, T., Oishi, K., Tanaka, R., Knol, J., and Kushir, A., Multilocus sequence typing of bifidobacterial strains from infant’s faeces and human milk: are bifidobacteria being sustainably shared during breastfeeding?, Beneficial Microbes, 2015, vol. 6, pp. 563–572.

    Article  CAS  PubMed  Google Scholar 

  • Massi, M., Ioan, P., Budriesi, R., Chiarini, A., Vitali, B., Lammers, K.M., Gionchetti, P., Campieri, M., Lembo, A., and Brigidi, P., Effects of probiotic bacteria on gastrointestinal motility in guinea-pig isolated tissue, World J. Gastroenterol., 2006, vol. 12, pp. 5987–5994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto, M., Kibe, R., Ooga, T., Aiba, Y., Sawaki, E., Koga, Y., and Benno, Y., Cerebral low-molecular metabolites influenced by intestinal microbiota: a pilot study, Front. Syst. Neurosci., 2013, vol. 7, pp. 1–19.

    Article  Google Scholar 

  • Mayer, E.A., Gut feelings: the emerging biology of gutbrain communication, Nat. Rev. Neurosci., 2011, vol. 12, pp. 453–466.

    Article  CAS  PubMed  Google Scholar 

  • Medinets, S., Skiba, U., Rennenberg, H., and Butterbach-Bahl, K., A review of soil NO transformation: associated processes and possible physiological significance on organisms, Soil Biol. Biochem., 2015, vol. 80, pp. 92–117.

    Article  CAS  Google Scholar 

  • Messaoudi, M., Lalonde, R., Violle, N., Javelot, H., Desor, D., and Nejdi, A., Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects, Br. J. Nutr., 2011a, vol. 105, pp. 755–764.

    Article  CAS  PubMed  Google Scholar 

  • Messaoudi, M., Violle, N., Bisson, J.F., Desor, D., Javelot, H., and Rougeot, C., Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers, Gut Microbes, 2011b, vol. 2, pp. 256–261.

    Article  PubMed  Google Scholar 

  • Mody, I., Koninck, Y. De., Otis, T.S., and Soltesz, I., Bridging the cleft at GABA synapses in the brain, Neuroscience, 1994, vol. 17, pp. 517–525.

    CAS  Google Scholar 

  • Moloney, R.D., Desbonnet, L., Clark, G., Dinan, T.G., and Cryan, J.F., The microbiome: stress, health and disease, Mammalian Genome, 2014, vol. 25, pp. 49–74.

    Article  CAS  Google Scholar 

  • Nei, D., Kawasaki, S., Inatsu, Y., Yamamoto, K., and Satoni, M., Effectiveness of gamma-irradiation in the inactivation of histamine-producing bacteria, Food Control, 2013, vol. 28, pp. 143–146.

    Article  CAS  Google Scholar 

  • Nelson, K.E., Weinstock, G.M., and Highlander, S.K., Human microbiome jumpstart reference strains consortium. A catalog of reference genomes from the human microbiome, Science, 2010, vol. 328, pp. 994–999.

    Article  CAS  PubMed  Google Scholar 

  • Neufeld, K.M., Kang, N., Bienenstock, J., and Foster J., Reduced anxiety like behavior and central neurochemical change in germ free mice, Neurogastroenterol. Motil., 2011, vol. 23, pp. 255–264.

    Article  CAS  PubMed  Google Scholar 

  • Nicodemus, K.K., Elvevag, B., Foltz, P.W., Rosenstein, M., Diaz-Asper, C., and Weinberger D.R., Category fluency, latent semantic analysis and schizophrenia: a candidate gene approach, J. Devoted Study Nerv. Syst. Behav., 2014, vol. 55, pp. 182–191.

    Article  Google Scholar 

  • O’Mahony, L., McCarthy, J., Kelly, P., Hurley, G., Luo, F., and Chen, K., Lactobacillus and Bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles, Gastroenterology, 2005, vol. 128, pp. 541–551.

    Article  PubMed  Google Scholar 

  • O’Mahony, S.M., Clarke, G., Borre, Y.E., Dinan, T.G., and Cryan, J.F., Serotonin, tryptophan metabolism and the brain-gut-microbiome axis, Behav. Brain Res., 2015, vol. 277, pp. 32–48.

    PubMed  Google Scholar 

  • O’Mahony, S.M., Marchesi, J.R., Scully, P., Codling, C., Ceolho, A.M., Quigley, E.M., Cryan, J.F., and Dinan, T.G., Early life stress alters behavior,immunity,and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses, Biol. Psychiatry, 2009, vol. 65, pp. 263–267.

    Article  PubMed  Google Scholar 

  • Oleskin, A.V., El’-Registan, G.I., and Shenderov, B.A., Role of neuromediators in the functioning of the human microbiota: “business talks” among microorganisms and the microbiota-host dialogue, Microbiology (Moscow), 2016, vol. 85, no. 1, pp. 3–25.

    Article  CAS  Google Scholar 

  • Oleskin, A.V., Zhilenkova, O.G., Shenderov, B.A., Amerkhanova, A.M., Kudrin, V.S., and Klodt, P.M., Starter cultures of lactobacilli producing neuromediators: biogenic amines and amino acids, Mol. Prom., 2014, pp. 42–43.

    Google Scholar 

  • Ozogul, F., Production of biogenic amines by Morganella morganii, Klebsiella pneumonia and Hafnia alvii using a rapid HPLC method, Eur. Food Res. Technol., 2004, vol. 219, pp. 465–469.

    Google Scholar 

  • Padgett, C.L., Lalive, A.L., Tan, K.R., Terunuma, M., Munoz, M.B., Pangalos, M.N., Martínez-Hernández, J., Watanabe, M., Moss, S.J., Luján, R., Lüscher, C., and Slesinger, P.A., Methamphetamine-evoked depression of GABA receptor signaling in GABA neurons of the VTA, Neuron, 2012, vol. 73, pp. 978–989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer, C., Bik, E.M., Digiulio, D.B., Relman, D.A., and Brown, P.O., Development of the human infant intestinal microbiota, PLoS Biol., 2007, vol. 5, pp. 1556–1573.

    Article  CAS  Google Scholar 

  • Panin, L.E. and Usenko, G.A., Trevozhnost’, adaptatsiya i donozologicheskaya dispanserizatsiya (Anxiety, Adaptation and Pre-Nosological Clinical Examentaion), Novosibirsk: SO RAMN, 2004.

    Google Scholar 

  • Penders, J., Thijs, C., Vink, C., Stelma, F.F., Snijders, B., Kummeling, I., van den Brandt, P.A., and Stobberingh, E.E., Factors influencing the composition of the intestinal microbiota in early infancy, Pediatrics, 2006, vol. 118, pp. 511–521.

    Article  PubMed  Google Scholar 

  • Perez-Burgos, A., Wang, B., Mao, Y.K., Mistry, B., McVey Neufeld, K.A., Bienenstock, J., and Kunze, W., Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents, Am. J. Physiol. Gastrointest. Liver Physiol., 2013, vol. 304, pp. 211–220.

    Article  CAS  Google Scholar 

  • Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., Mende, D.R., Li, J., Xu, J., Li, S., Li, D., et al., A human gut microbial gene catalogue established by metagenomic sequencing, Nuture, 2010, vol. 464, pp. 59–67.

    Article  CAS  Google Scholar 

  • Rao, A.V., Bested, A.C., Beaulne, T.M., Katzman, M.A., Iorio, C., Berardi, J.M., and Logan, A.C., A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome, Gut Pathog., 2009, vol. 1, no. 6, pp. 1–6. doi 10.1186/1757- 4749-1-6

    Google Scholar 

  • Reigstad, C.S., Salmonson, C.E., Rainey, J.F., Szurszewski, J.H., Linden, D.R., Sonnenburg, J.L., Farrugia, G., and Kashyap, P.C., Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells, FASEB J., 2015, vol. 29, pp. 1395–1403.

    Article  CAS  PubMed  Google Scholar 

  • Ringel-Kulka, T., Goldsmith, J.R., Carroll, I.M., Barros, S.P., Palsson, O., Jobin, C., and Ringel, Y., Lactobacillus acidophilus NCFM affects colonic mucosal opioid receptor expression in patients with functional abdominal pain–a randomised clinical study, Aliment Pharmacol. Ther., 2014, vol. 40, pp. 200–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohrscheib, C.E. and Brownlie, J.C., Microorganisms that manipulate complex animal behaviours by affecting the host’s nervous system, Springer Sci. Rev., 2013, vol. 1, pp. 133–140.

    Article  Google Scholar 

  • Rosberg-Cody, E., Ross, R.P., Hussey, S., Ryan, C.A., Murphy, B.P., Fitzgerald, G.F., Devery, R., and Stanton, C., Mining the microbiota of the neonatal gastrointestinal tract for conjugated linoleic acid-producing bifidobacteria, Appl. Environ. Microbiol., 2004, vol. 70, pp. 4635–4641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roshchina, V.V., Evolutionary considerations of neurotransmitters in microbial, plant and animal cells, in Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health, Lyte, M. and Freestone, P.P., Eds., New York: Springer, 2010, pp. 17–52.

    Chapter  Google Scholar 

  • Rousseaux, C., Thuru, X., Gelot, A., Barnich, N., Neut, C., Dubuquoy, L., Dubuquoy, C., Merour, E., Geboes, K., Chamaillard, M., Ouwehand, A., Leyer, G., Carcano, D., Colombel, J.F., Ardid, D., and Desreumaux, P., Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors, Nat. Med., 2007, vol. 13, pp. 35–37.

    Article  CAS  PubMed  Google Scholar 

  • Ryu, Y.H., Baik, J.E., Yang, J.S., Kang, S.S., Im, J., Yun, C.H., Kim, D.W., Lee, K., Chung, D.K., Ju, H.R., and Han S.H., Differential immunostimulatory effects of Gram-positive bacteria due to their lipoteichoic acids, Int. Immunopharmacol., 2009, vol. 9, pp. 127–133.

    Article  CAS  PubMed  Google Scholar 

  • Sampson, T.R. and Mazmanian, S.K., Control of brain development, function, and behavior by the microbiome, Cell Host Microbe, 2015, vol. 17, pp. 565–576.

    Article  CAS  PubMed  Google Scholar 

  • Santos, F., Wegkamp, A., de Vos, W.M., Smid, E.J., and Hugenholtz, J., High-level folate production in fermented foods by the B12 producer Lactobacillus reuteri JCM1112, Appl. Environ. Microbiol., 2008, vol. 74, pp. 3291–3294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saulnier, D.M., Ringel, Y., Heyman, M.B., Foster, J.A., Bercik, P., Shulman, R.J., Versalovic, J., Verdu, E.F., Dinan, T.G., Hecht, G., and Guarner, F., The intestinal microbiome, probiotics and prebiotics in neurogastroenterology, Gut Microbes, 2013, vol. 4, pp. 17–27.

    Article  PubMed  Google Scholar 

  • Savignac, H.M., Kiely, B., Dinan, T.G., and Cryan, J.F., Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice, Neurogastroenterol. Motil., 2014, vol. 26, pp. 1615–1627.

    Article  CAS  PubMed  Google Scholar 

  • Schuller, H.M., Al-Wadei, H.A.N., and Majidi, M., Gamma-aminobutyric acid, a potential tumor suppressor for small airway-derived lung adenocarcinoma, Carcinogenesis, 2008, vol. 29, pp. 1979–1985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott, L.V., Clarke, G., and Dinan, T.G., The brain-gut axis: a target for treating stress-related disorders, Inflammation in Psychiatry, 2013, vol. 28, pp. 90–99.

    Article  CAS  Google Scholar 

  • Selye, H., A syndrome produced by various nucuous agents, Nature, 1936, vol. 138, pp. 32–34.

    Article  Google Scholar 

  • Seo, M.J., Nam, Y.D., Lee, S.Y., and Park, S.L., Expression and characterization of a glutamate decarboxylase from Lactobacillus brevis 877G producing gamma-aminobutyric acid, Biosci. Biotechnol. Biochem., 2013, vol. 77, pp. 853–856.

    Article  CAS  PubMed  Google Scholar 

  • Sharon, G., Garg, N., Debelius, J., Knight, R., Dorrestein, P.C., and Mazmanian, S.K., Specialized metabolites from the microbiome in health and disease, Cell Metabolism, 2014, vol. 20, pp. 719–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shenderov, B.A. and Midtvedt, T., Epigenomic programing: a future way to health?, Microb. Ecol. Health Dis., 2014, vol. 25, pp. 1–8. doi 10.3402/mehd.v25.24145

    Google Scholar 

  • Shishov, V.A., Kirovskaya, T.A., Kudrin, V.S., and Oleskin, A.V., Amine neuromediators,their precursors, and oxidation products in the culture of Escherichia coli K-12, Appl. Biochem. Microbiol., 2009, vol. 45, pp. 494–497.

    CAS  Google Scholar 

  • Siragusa, S., De Angelis, M., Di Cagno, R., Rizzello, C.G., Coda, R., and Gobbetti, M., Synthesis of gamma-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses, Appl. Environ. Microbiol., 2007, vol. 73, pp. 7283–7290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stilling, R.M., Dinan, T.G., and Cryan, J.F., Microbes do have a significant impact on epigenetic regulation in the host’s gut epithelium and immune system, microbial genes, brain and behaviour-epigenetic regulation of the gut-brain axis, Genes Brain Behav., 2014, vol. 13, pp. 69–86.

    CAS  PubMed  Google Scholar 

  • Strakhovskaya, M.G., Ivanova, E.I., and Fraikin, G.Ya., Stimulatory effect of serotonin on growth of the yeast Candida guillermondii and bacteria Streptococcus faecalis, Mikrobiologiya, 1993, vol. 62, no. 1, pp. 46–49.

    CAS  Google Scholar 

  • Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X.-N., Kubo, C., and Koga, Y., Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice, J. Physiol., 2004, vol. 558, pp. 263–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas, C.M., Hong, T., van Pijkeren, J.P., Hemarajata, P., Trinh, D.V., Hu, W., Britton, R.A., Kalkum, M., and Versalovic, J., Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling, PLoS One, 2012, vol. 7, no. 2, pp. 1–15.

    Article  CAS  Google Scholar 

  • Tilg, H. and Kaser, A. Gut microbiome, obesity, and metabolic dysfunction, J. Clin. Invest., 2011, vol. 121, pp. 2126–2132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tillisch, K., Labus, J., Kilpatrick, L., Jiang, Z., Stains, J., Ebrat, B., Guyonnet, D., Legrain-Raspaud, S., Trotin, B., Naliboff, B., and Mayer, E.A., Consumption of fermented milk product with probiotic modulates brain activity, Gastroenterology, 2013, vol. 144, pp. 1394–1401.

    Article  CAS  PubMed  Google Scholar 

  • Tillisch, K., The effects of gut microbiota on CNS function in humans, Gut Microbes, 2014, vol. 5, pp. 404–410.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tkachenko, E.I. and Uspenskii, Yu.P., Pitanie, mikrobiotsenoz i intellekt cheloveka (Nutrition, Microbiocenosis, and Human Intelligence), Moscow: SpetsLit, 2006.

    Google Scholar 

  • Tsavkelova, E.A., Botvinenko, I.B., Kudrin, V.S., and Oleskin, A.V., Detection of neurotransmitter amines in microorganisms with the use of high-performance liquid chromatography, Doklady Biochem. Biophys., 2000, vol. 372, pp. 115–117.

    CAS  Google Scholar 

  • Tujioka, K., Ohsumi, M., Horie, K., Kim, M., Hayase, K., and Yokogoshi, H., Dietary gamma-aminobutyric acid affects the brain protein synthesis rate in ovariectomized fema le rats, J. Nutr. Sci. Vitaminol., 2009, vol. 55, pp. 75–80.

    Article  CAS  PubMed  Google Scholar 

  • Turnbaugh, P.J., Hamady, M., Yatsunenko, T., Cantarel, B.L., Duncan, A., Ley, R.E., Sogin, M.L., Jones, W.J., Roe, B.A., Affourtit, J.P., Egholm, M., Henrissat, B., Heath, A.C., Knight, R., and Gordon, J.I., A core gut microbiome in obese and lean twins, Nature, 2009, vol. 457, pp. 480–484.

    Article  CAS  PubMed  Google Scholar 

  • Turroni, F., Peano, C., Pass, D.A., Foroni, E., Severgnini, M., Claesson, M.J., Kerr, C. and Hourihane, J., Diversity of bifidobacteria within the infant gut microbiota, PLoS One, 2012, vol. 7, no. 5, pp. 1–12.

    Article  CAS  Google Scholar 

  • Vandenplas, Y., Huys, G., and Daube, G., Probiotics: an update, J. Pediatr. (Rio J.), 2015, vol. 91, pp. 6–21.

    Article  Google Scholar 

  • Viswanathan, J., Haapasalo, A., Kurkinen, K.M., Natunen, T., Makinen, P., and Bertram, L., Ubiquilin-1 modulates gamma-secretase-mediated epsilon-site cleavage in neuronal cells, Biochem., 2013, vol. 52, pp. 3899–3912.

    Article  CAS  Google Scholar 

  • Waldecker, M., Kautenburger, T., Daumann, H., Busch, C., and Schrenk, D., Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon, J. Nutr. Biochem., 2008, vol. 19, pp. 587–593.

    Article  CAS  PubMed  Google Scholar 

  • Wall, R., Marques, T.M., O’Sullivan, O., Ross, R.P., Shanahan, F., and Quigley, E.M., Contrasting effects of Bifidobacterium breve NCIMB 702258 and Bifidobacterium breve DPC 6330 on the composition of murine brain fatty acids and gut microbiota, Am. J. Clin. Nutr., 2012, vol. 95, pp. 1278–1287.

    Article  CAS  PubMed  Google Scholar 

  • Wang, B., Mao, Y.K., Diorio, C., Pasyk, M., Wu, R.Y., Bienenstock, J., and Kunze, W.A., Luminal administration ex vivo of a live Lactobacillus species moderates mouse jejunal motility within minutes, FASEB J., 2010, vol. 24, pp. 4078–4088.

    Article  CAS  PubMed  Google Scholar 

  • Williams, B.B., van Benschoten, A.H., Cimermancic, P., Donia, M.S., Zimmermann, M., Taketani, M., Ishihara, A., Kashyap, P.C., Fraser, J.S., and Fischbach, M.A., Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine, Cell Host Microbe, 2014, vol. 16, pp. 495–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong, C.G., Bottiglieri, T., and Snead, O.C., GABA, gamma-hydroxybutyric acid, and neurological disease, Ann. Neurol., 2003, vol. 54, no. 6, pp. 3–12.

    Article  CAS  Google Scholar 

  • Wu, T.Y., Tsai, C.C., Hwang, Y.T., and Chiu, T.H., Effect of antioxidant activity and functional properties of Chingshey purple sweet potato fermented milk by Lactobacillus acidophilus,L. delbrueckii subsp. lactis,and L. gasseri strains, J. Food Sci., 2012, vol. 7, pp. 2–8.

    Article  CAS  Google Scholar 

  • Yano, J.M., Yu, K., Donaldson, G.P., Shastri, G.G., Ann, P., Ma, L., Nagler, C.R., Ismagilov, R.F., Mazmanian, S.K., and Hsiao, E.Y., Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis, Cell, 2015, vol. 161, pp. 264–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarullina, D.R., Smolentseva, O.A., and Ilinskaya, O.N., Modulation of nitric oxide (NO) biosynthesis in lactobacilli, Mos.Univ. Biol. Sci. Bull., 2011, pp. 79–80.

    Google Scholar 

  • Yatsunenko, T., Rey, F.E., Manary, M.J., Trehan, I., Dominguez-Bello, M.G., and Contreras, M., Human gut microbiome viewed across age and geography, Nature, 2012, vol. 486, pp. 222–227.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young, V.B., The intestinal microbiota in health and disease, Opin. Gastroenterol., 2012, vol. 28, pp. 63–69.

    Article  CAS  Google Scholar 

  • Yunes, R., Nezametdinova, V., Klimina, K., Chertovich, N., Averina, O., Danilenko, V., Kozlovsky, Y., Dyachkova, M., and Poluektova, E., Gamma-aminobutyric acid producing Lactobacillus and Bifidobacterium strains isolated from the human body—candidates for future psychobiotics, Abstracts Int. Sci. Conf. on Probiotics and Prebiotics— IPC2015, Budapest, 2015, p. 28.

    Google Scholar 

  • Zakharevich, N.V., Averina, O.V., Klimina, K.M., Kudryavtseva, A.V., Kasianov, A.S., Makeev, V.J., and Danilenko, V.N., Complete genome sequence of Bifidobacterium longum GT15: Identification and characterization of unique and global regulatory genes, Microbial Ecology, 2015, pp. 1–18. doi 10.1007/s00248-015-0603-x

    Google Scholar 

  • Zhou, L. and Foster, J.A., Psychobiotics and the gut-brain axis: in the pursuit of happiness, Neuropsychiatr. Dis. Treat., 2015, vol. 11, pp. 715–723.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zoetendal, E.G., Akkermans, A.D., and De Vos, W.M., Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and hostspecific communities of active bacteria, Appl. Environ. Microbiol., 1998, vol. 64, pp. 3854–3859.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zoetendal, E.G., Akkermans, A.D.L., Akkermans-van Vliet, W.M., de Visser, A.G.M., and de Vos, W.M., The host genotype affects the bacterial community in the human gastronintestinal tract, Microb. Ecol. Health Dis., 2001, vol. 13, pp. 129–134.

    Article  Google Scholar 

  • Zucchi, R., Chiellini, G., Scanlan, T.S., and Grandy, D.K., Trace amine associated receptors and their ligands, Br. J. Pharmacol., 2006, vol. 149, pp. 967–978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Averina.

Additional information

Original Russian Text © O.V. Averina, V.N. Danilenko, 2017, published in Mikrobiologiya, 2017, Vol. 86, No. 1, pp. 5–24.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Averina, O.V., Danilenko, V.N. Human intestinal microbiota: Role in development and functioning of the nervous system. Microbiology 86, 1–18 (2017). https://doi.org/10.1134/S0026261717010040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261717010040

Keywords

Navigation