Skip to main content
Log in

Terpenoids with antifungal activity trigger mitochondrial dysfunction in Saccharomyces cerevisiae

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

A number of pathogenic fungi like Candida, cannot survive upon damage to mitochondrial DNA (mtDNA) while the budding yeast can tolerate the damage therefore we chose Saccharomyces cerevisiae as a model system for this study. Since a number of potent antifungals have originated from various natural sources, we decided to use a triterpenoid and tetraterpenoid in this study as an antifungal agent. Our data clearly indicates that terpenoids play a role in diminishing the mitochondrial content which results in altered level of reactive oxygen species (ROS) and ATP generation. Here, we report that triterpenoid and tetraterpenoid display MIC at 100 and 120 μg /mL respectively against S. cerevisiae. At MIC dose triterpenoid (Lupeol) treated cells showed relatively higher mitochondrial dysfunction as compared to tetraterpenoid, resulting high level of ROS generation in triterpenoid in comparison to tetraterpenoid treated cells. Whereas the ATP level decreases in triterpenoid treated cells while it remains same in tetraterpenoid treated cells. Hence triterpenoid showed more potent antifungal activity as compared to the tetraterpenoid at their MIC by targeting mitochondrial integrity. The outcome of the study is to decipher the mode of action of terpenoids which will be useful in designing of improved antifungal therapies and also accelerate the development of translational applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amacher, D.E., Drug-associated mitochondrial toxicity and its detection, Curr. Med. Chem., 2005, vol. 12, no. 16, pp. 1829–1839.

    Article  CAS  PubMed  Google Scholar 

  • Buckingham, J., Dictionary of Natural Products, Web Version 2004, London: Chapman and Hall. Available at: http://www.chemnetbase.com

    Google Scholar 

  • Cui, Y., Zhao, S., Wu, Z., Dai, P., Zhou, B., Mitochondrial release of the NADH dehydrogenase Ndi1 induces apoptosis in yeast, Mol. Biol. Cell, 2012, vol. 23, pp. 4373–4381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fromenty, B. and Pessayre, D., Inhibition of mitochondrial beta-oxidation as a mechanism of hepatotoxicity, Pharmacol. Ther., 1995, vol. 67, pp. 101–154.

    Article  CAS  PubMed  Google Scholar 

  • Ha, H.C. and Snyder, S.H., Poly (ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion, Proc. Natl. Acad. Sci. U. S. A., 1999, vol. 96, pp. 13978–13982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jadiya, P. and Nazir, A., Environmental toxicants as extrinsic epigenetic factors for parkinsonism: studies employing transgenic C. elegans model, CNS Neurol. Disord. Drug Targets, 2012, vol. 11, pp. 976–983.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J.H., Lee, H.O., Cho, Y.J., Kim, J., Chun, J., Choi, J., Lee, Y., and Jung, W.H., A vanillin derivative causes mitochondrial dysfunction and triggers oxidative stress in Cryptococcus neoformans, PLoS One, 2014 doi 10.1371/journal.pone.0089122

    Google Scholar 

  • Kobayashi, D., Kondo, K., Uehara, N., Otokozawa, S., Tsuji, N., Yagihashi, A., and Watanabe, N., Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect, Antimicrob. Agents Chemother., 2002, vol. 46, pp. 3113–3117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyle, A. R. and Rick, G.S., Isoflavones promote mitochondrial biogenesis, J. Pharmacol. Exp. Therap., 2008, vol. 325, pp. 536–543.

    Article  Google Scholar 

  • Labbe, G., Pessayre, D., and Fromenty, B., Drug-induced liver injury through mitochondrial dysfunction: mechanisms and detection during preclinical safety studies, Fundam. Clin. Pharmacol., 2008, vol. 22, pp. 335–353.

    Article  CAS  PubMed  Google Scholar 

  • Lakshmi, V., Mahdi, A.A, Ahmad, M.K., Agarwal, S.K., and Srivastava, A.K., Antidiabetic activity of lupeol and lupeol esters in streptozotocin-induced diabetic rats, Bangladesh Pharmaceut. J., 2014, vol. 17, no. 2, pp. 138–146.

    Google Scholar 

  • Lane, N., Mitochondrial disease: powerhouse of disease, Nature, 2006, vol. 440, pp. 600–602.

    Article  CAS  PubMed  Google Scholar 

  • Leist, M., Single, B., Castoldi, A.F., Kuhnle, S., and Nicotera, P., Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis, J. Exp. Med., 1997, vol. 185, pp. 1481–1486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesnefsky, E.J., Moghaddas, S., Tandler, B., Kerner, J., and Hoppel, C.L., The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology, IUBMB Life, 2001, vol. 52, pp. 159–164.

    Article  Google Scholar 

  • Luo, D. Q., Wang, H., Tian, X., Shao, N.J., and Liu, J.K., Antifungal properties of pristimerin and celastrol isolated from Celastrus hypoleucus, Pest Manag. Sci., 2005, vol. 61, pp. 85–90.

    Article  CAS  PubMed  Google Scholar 

  • Marthanda, M., Subramanyan, M., Hima, M., and Annapurna, J., Antimicrobial activity of clerodane diterpenoids from Polyalthia longifolia seeds, Fitoterapia, 2005, vol. 76, pp. 336–339.

    Article  Google Scholar 

  • Masubuchi, Y., Suda, C., and Horie, T., Involvement of mitochondrial permeability transition in acetaminopheninduced liver injury in mice, J. Hepatol., 2005, vol. 42, pp. 110–116.

    Article  CAS  PubMed  Google Scholar 

  • Menezes, R.A., Amaral, C., Batista-Nascimento, L., Santos, C., and Ferreira, R.B., Contribution of Yap1 towards Saccharomyces cerevisiae adaptation to arsenic-mediated oxidative stress, Biochem. J., 2008, vol. 414, pp. 301–311.

    Article  CAS  PubMed  Google Scholar 

  • Nicotera, P. and Leist, M., Energy supply and the shape of death in neurons and lymphoid cells, Cell Death Differ., 1997, vol. 4, pp. 435–442.

    Article  CAS  PubMed  Google Scholar 

  • Nucci, M. and Perfect, J. R., When primary antifungal therapy fails, Clin. Infect. Dis., 2008, vol. 46, pp. 1426–1433.

    Article  PubMed  Google Scholar 

  • Perrone, G.G., Tan, S.X., and Dawes, I.W., Reactive oxygen species and yeast apoptosis, Biochim. Biophys. Acta, 2008, vol. 1783, pp. 1354–1368.

    Article  CAS  PubMed  Google Scholar 

  • Pfaller, M.A., Diekema, D.J., and Sheehan, D.J., Interpretive breakpoints for fluconazole and Candida revisited: a blueprint for the future of antifungal susceptibility testing, Clin. Microbiol. Rev., 2006, vol. 19, pp. 435–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao, A., Zhang, Y., Muend, S., and Rao, R., Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the tor pathway, Antimicrob. Agents Chemother., 2010, vol. 54, no. 12, pp. 5062–5069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schapira, A.H., Mitochondrial disease, Lancet, 2006, vol. 368, pp. 70–82.

    Article  CAS  PubMed  Google Scholar 

  • Sherman, F., Getting started with yeast, Methods Enzymol., 1991, vol. 194, pp. 3–21.

    Article  CAS  PubMed  Google Scholar 

  • Shingu-Vazquez, M. and Traven, A., Mitochondria and fungal pathogenesis: drug tolerance, virulence, and potential for antifungal therapy, Eukaryot. Cell., 2011, vol. 10, pp. 1376–1383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobel, J.D., Wiesenfeld, H.C., Martens, M., Danna, P., Hooton, T.M., Rompalo, A., Sperling, M., Livengood, C., 3rd, Horowitz, B., Von Thron, J., Edwards, L., Panzer, H., and Chu, TC., Maintenance fluconazole therapy for recurrent vulvovaginal candidiasis, N. Engl. J. Med., 2004, vol. 351, pp. 876–883.

    Article  CAS  PubMed  Google Scholar 

  • Tsujimoto, Y., Apoptosis and necrosis: Intracellular ATP level as a determinant for cell death modes, Cell Death Differ., 1997, vol. 4, pp. 429–434.

    Article  CAS  PubMed  Google Scholar 

  • Varma, J. and Dubey, N.K., Efficacy of essential oils of Caesulia axillaris and Mentha arvensis against some storage pests causing biodeterioration of food commodities, Int. J. Food Microbiol., 2001, vol. 68, pp. 207–210.

    Article  CAS  PubMed  Google Scholar 

  • Verma, M., Sharma, A., Naidu, S., Bhadra, A.K., Kukreti, R., and Taneja, V., Curcumin prevents formation of polyglutamine aggregates by inhibiting Vps36, a component of the ESCRT-II complex, PLoS One, 2013, doi 10.1371/journal.pone.0042923

    Google Scholar 

  • White, T.C., Marr, K.A., and Bowden, R.A., Clinical, cellular and molecular factors that contribute to antifungal drug resistance, Clin. Microbiol. Rev., 1998, vol. 11, pp. 382–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zamaraeva, M.V., Sabirov, R.Z., Maeno, E., Ando-Akatsuka, Y., Bessonova, S.V., and Okada, Y., Cells die with increased cytosolic ATP during apoptosis: a bioluminescence study with intracellular luciferase, Cell Death Differentiation, 2005, vol. 12, pp. 1390–1397.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Mir.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haque, E., Irfan, S., Kamil, M. et al. Terpenoids with antifungal activity trigger mitochondrial dysfunction in Saccharomyces cerevisiae . Microbiology 85, 436–443 (2016). https://doi.org/10.1134/S0026261716040093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261716040093

Keywords

Navigation