Skip to main content
Log in

Role of thiol redox systems in Escherichia coli response to thermal and antibiotic stresses

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Isogenic knockout mutants of Escherichia coli deficient in components of the glutathione and thioredoxin redox systems and growing at various temperatures (20–46°C) exhibited considerable differences in growth rate and survival, as well as in expression of the antioxidant genes. In the parental strain E. coli BW25113 (wt) treated with ciprofloxacin, ampicillin, or streptomycin, dependence of survival on growth temperature was a V-shaped curve with the maximum sensitivity within the range corresponding to high growth rates (40–44°C). Significant inverse correlation was observed between log CFU at different temperatures and specific growth rate prior to antibiotic addition. This applied to most of the mutants, which exhibited higher resistance to the three antibiotics tested at nonoptimal temperatures (20 and 46°C) than at 37 and 40°C. No correlation was found between resistance to stress and antibiotics and expression of the antioxidant genes. The role of global regulators ppGpp and σs in E. coli resistance to antibiotics and nonoptimal temperatures was shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aslund, F., Zheng, M., Beckwith, J., and Storz, G., Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status, Proc. Natl. Acad. Sci. U. S. A., 1999, vol. 96, pp. 6161–6165.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K. A., Tomita, M., Wanner, B.L., and Mori, H., Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection, Mol. Syst. Biol., 2006, vol. 2, pp. 1–11.

    Article  Google Scholar 

  • Benov, L. and Fridovich, I., Superoxide dismutase protects against aerobic heat shock in Escherichia coli, J. Bacteriol., 1995, vol. 177, pp. 3344–3346.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carmel-Harel, O. and Storz, G., Roles of the glutathioneand thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stresses, Annu. Rev. Microbiol., 2000, vol. 54, pp. 439–461.

    Article  CAS  PubMed  Google Scholar 

  • Eng, R.H.K., Padberg, F.T., Smith, S.M., Tan, E.N., and Cherubin, C.E., Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria, Antimicrob. Agents Chemother., 1991, vol. 35, pp. 1824–1828.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fahey, R.C., Brown, W.C., Adams, W.B., and Worsham, M.B., Occurrence of glutathione in bacteria, J. Bacteriol., 1978, vol. 133, pp. 1126–1129.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gunasekera, T.S., Laszlo, N., Csonka, L.N., and Paliy, O., Genome-wide transcriptional responses of Escherichia coli K-12 to continuous osmotic and heat stresses, J. Bacteriol., 2008, vol. 190, pp. 3712–3720.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gentry, D.R., Hernandez, V.J., Nguyen, L.H., Jensen, D.B., and Cashel, M., Synthesis of the stationary-phase sigma factor ss is positively regulated by ppGpp, J. Bacteriol., 1993, vol. 175, pp. 7982–7989.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Greenway, D.L.A. and England, R.R., The intrinsic resistance of Escherichia coli to various antimicrobial agents requires ppGpp and ss, Lett. Appl. Microbiol., 1999, vol. 29, pp. 323–326.

    Article  CAS  PubMed  Google Scholar 

  • Goswami, M. and Jawali, N., Glutathione-mediated augmentation of ß-lactam antibacterial activity against Escherichia coli, J. Antimicrob. Chemother., 2007, vol. 80, pp. 184–185.

    Article  Google Scholar 

  • Goswami, M., Mangoli, S.H., and Jawali, N., Effects of glutathione and ascorbic acid on streptomycin sensitivity of Escherichia coli, Antimicrob. Agents Chemother., 2007, vol. 51, pp. 1119–1122.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holmgren, A., Thioredoxin and glutaredoxin systems, J. Biol. Chem., 1989, vol. 264, pp. 13963–13966.

    CAS  PubMed  Google Scholar 

  • Jones, P.G., Cashel, M., Glaser, G., and Neidhardt, F.C. Function of a relaxed-like state following temperature downshifts in Escherichia coli, J. Bacteriol., 1992, vol. 174, pp. 3903–3914.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kohanski, M.A., Dwyer, D.J., Hayete, B., Lawrence, C.A., and Collins, J.J. A common mechanism of cellular death induced by bactericidal antibiotics, Cell, 2007, vol. 130, pp. 797–810.

    Article  CAS  PubMed  Google Scholar 

  • Miller, J.H., Experiments in Molecular Genetics, Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1972.

    Google Scholar 

  • Mackow, E.R. and Chang, F.N., Correlation between RNA synthesis and ppGpp content in Escherichia coli during temperature shifts, Mol. Gen. Genet., 1983, vol. 192, pp. 5–9.

    Article  CAS  PubMed  Google Scholar 

  • Phadtare, S. and Inouye, M., Genome-wide transcriptional analysis of the cold-shock response in wild type and cold sensitive quadruple-csp-deletion strains of Escherichia coli, J. Bacteriol., 2004, vol. 186, pp. 7007–7014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poole, K., Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria, Trends Microbiol., 2012, vol. 20, pp. 227–234.

    Article  CAS  PubMed  Google Scholar 

  • Potrykus, K. and Cashel, M. (p)ppGpp: Still magical?, Annu. Rev. Microbiol., 2008, vol. 62, pp. 35–51.

    Article  CAS  PubMed  Google Scholar 

  • Potrykus, K., Murphy, H., Philippe, N., and Cashel, M., ppGpp is the major source of growth rate control in E. coli, Environ. Microbiol., 2011, vol. 13, pp. 563–575.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seaver, L.C. and Imlay, J.A., Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli, J. Bacteriol., 2001, vol. 183, pp. 7173–7181.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smirnova, G.V. and Oktyabrsky, O.N., Glutathione in bacteria, Biochemistry (Moscow), 2005, vol. 70, no. 11, pp. 1199–1211.

    CAS  PubMed  Google Scholar 

  • Smirnova, G.V., Zakirova, O.N., and Oktyabrskii, O.N., The role of antioxidant systems in the cold stress response of Escherichia coli, Microbiology (Moscow), 2001a, vol. 70, no. 1, pp. 45–50.

    Article  CAS  Google Scholar 

  • Smirnova, G.V., Zakirova, O.N., and Oktyabrsky O.N., The role of antioxidant systems in the response of E. coli to heat shock, Microbiology (Moscow), 2001b, vol. 70, no. 5, pp. 512–518.

    Article  CAS  Google Scholar 

  • Takemoto, T., Zhang, Q.M., and Yonei, S., Different mechanisms of thioredoxin in its reduced and oxidized forms in defense against hydrogen peroxide in Escherichia coli, Free Radic. Biol. Med., 1998, vol. 24, pp. 556–562.

    Article  CAS  PubMed  Google Scholar 

  • Tuggle, C.K. and Fuchs, J.A., Glutathione reductase is not required for maintenance of reduced glutathione in Escherichia coli K12, J. Bacteriol., 1985, vol. 162, pp. 448–450.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tuomanen, E., Cozens, R., Tosch, W., Zak, O., and Tomasz, A., The rate of killing of Escherichia coli by β-lactam antibiotics is strictly proportional to the rate of bacterial growth, J. Gen. Microbiol., 1986, vol. 132, pp. 1297–1304.

    CAS  PubMed  Google Scholar 

  • Zhao, X., Hong, Y., and Drlica, K., Moving forward with reactive oxygen species involvement in antimicrobial lethality, J. Antimicrob. Chemother., 2015, vol. 70, pp. 639–642.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Oktyabrsky.

Additional information

Original Russian Text © G.V. Smirnova, E.V. Lepekhina, N.G. Muzyka, O.N. Oktyabrsky, 2016, published in Mikrobiologiya, 2016, Vol. 85, No. 1, pp. 26–35.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, G.V., Lepekhina, E.V., Muzyka, N.G. et al. Role of thiol redox systems in Escherichia coli response to thermal and antibiotic stresses. Microbiology 85, 23–32 (2016). https://doi.org/10.1134/S0026261716010124

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261716010124

Keywords

Navigation