Skip to main content

Advertisement

Log in

Invertase overproduction may provide for inulin fermentation by selection strains of Saccharomyces cerevisiae

  • Reviews
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

In some recent publications, the ability of selection strains of Saccharomyces cerevisiae to ferment inulin was attributed to inulinase activity. The review summarizes the literature data indicating that overproduction of invertase, an enzyme common to S. cerevisiae, may be responsible for this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shuvaeva, G.P., Garmanova, E.L., and Mal’tsev, O.Yu., RF Patent, no. 2147034, 2000.

  2. Rutkovskaya, T.R., Shuvaeva, G.P., and Korneeva, O.S., Inulinase of Saccharomyces cerevisiae VGSh-2. Preparative isolation and some physical and chemical properties, Fundamental’nye issledovaniya, 2010, no. 10, pp. 17–25.

    Google Scholar 

  3. Sokolenko, G.G. and Karpechenko, N.A., Inulinaseactive strain Saccharomyces cerevisiae-G, Biotekhnologiya, 2013, no. 6, pp. 18–22.

    Google Scholar 

  4. Lim, S.-H., Ryu, J.-M., Lee, H., Jeon, J.H., Sok, D.-E., and Choi, E.-S., Ethanol fermentation from Jerusalem artichoke powder using Saccharomyces cerevisiae KCCM50549 without pretreatment for inulin hydrolysis, Bioresour. Technol., 2011, vol. 102, pp. 2109–2111.

    Article  CAS  PubMed  Google Scholar 

  5. Wang, S.A. and Li, F.L., Invertase SUC2 is the key hydrolase for inulin degradation in Saccharomyces cerevisiae, Appl. Environ. Microbiol., 2013, vol. 79, pp. 403–406.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Yang, F., Liu, Z., Dong, W., Zhu, L., Chen, X., and Li, X., Ethanol production using a newly isolated Saccharomyces cerevisiae strain directly assimilating intact inulin with high degree of polymerization, Biotechnol. Appl. Biochem., 2013. Nov 18. doi: 10.1002/bab.1181

    Google Scholar 

  7. Chi, Z., Chi, Z., Zhang, T., Liu, G., and Yue, L., Inulinase-expressing microorganisms and applications of inulinases, Appl. Microbiol. Biotechnol., 2009, vol. 82, no. 2, pp. 211–220.

    Article  CAS  PubMed  Google Scholar 

  8. Neagu, C. and Bahrim, G., Inulinases-a versatile tool for biotechnology, Innovat. Rom. Food Biotechnol., 2011, vol. 9, pp. 1–11.

    CAS  Google Scholar 

  9. Snyder, H.E. and Phaff, H.J., Studies on a beta-fructosidase (inulinase) produced by Saccharomyces fragilis, Ant. van Leeuvenhoek. J. Microbiol. Serol., 1960, vol. 26, pp. 433–451.

    Article  CAS  Google Scholar 

  10. Yurkevich, V.V. and Kovaleva, N.S., Saccharose and inulinase functions of the active center of β-fructosidase from Kluyveromyces (Saccharomyces) fragilis, Dokl. Akad. Nauk SSSR, 1972, vol. 207, no. 5, pp. 1233–1235.

    CAS  Google Scholar 

  11. Vaughan-Martini, A. and Martini, A., Saccharomyces Meyen ex Reess (1870), in The Yeasts, A Taxonomic Study, Kurtzman, C.P., Fell, J.W., and Boekhout, T., Eds, Amsterdam: Elsevier, 2011, pp. 733–746.

    Chapter  Google Scholar 

  12. Carlson, M., Celenza, J.L., and Eng, F.J., Evolution of the dispersed SUC gene family of Saccharomyces by rearrangements of chromosome telomeres, Mol. Cell. Biol., 1985, vol. 5, pp. 2894–2902.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Naumov, G.I. and Naumova, E.S., Comparative genetics of yeasts. A novel β-fructosidase gene SUC8 in Saccharomyces cerevisiae, Russ. J. Genet., 2010, vol. 46, no. 3, pp. 323–330.

    Article  CAS  Google Scholar 

  14. Naumov, G.I. and Naumova, E.S., Polygenic control for fermentation of β-fructosides in the yeast Saccharomyces cerevisiae: new genes SUC9 and SUC10, Microbiology (Moscow), 2010, vol. 79, no. 2, pp. 160–166.

    Article  CAS  Google Scholar 

  15. Hohmann, S. and Zimmermann, F.K., Cloning and expression on a multicopy vector of five invertase genes of Saccharomyces, Curr. Genet., 1986, vol. 11, pp. 217–225.

    Article  CAS  PubMed  Google Scholar 

  16. Naumova, E.S., Sadykova, A.Zh., Martynenko, N.N., and Naumov, G.I., Molecular polymorphism of β-fructosidase SUC genes in the yeast Saccharomyces, Mol. Biol. (Moscow), 2014, vol. 48, no. 4, pp. 572–581.

    Article  Google Scholar 

  17. Perlman, D., Halvorson, H.O., and Cannon, L.E., Presecretory and cytoplasmic invertase polipeptides encoded by distinct mRNAs derived from the same structure gene differ by a signal sequence, Proc. Natl. Acad. Sci. U. S. A., 1982, vol. 79, pp. 781–785.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Oda, Yu., Micumo, D., Leo, F., and Urashima, T., Discrimination of Saccharomyces cerevisiae and Saccharomyces paradoxus strains by the SUC2 gene sequences, J. Gen. Appl. Microbiol., 2010, vol. 56, pp. 355–358.

    Article  CAS  PubMed  Google Scholar 

  19. Gozalbo, D. and Hohmann, S., The naturally occurring silent invertase structural gene suc2 0 contains an amber stop codon that is occasionally read through, Mol. Gen. Genet., 1989, vol. 216, pp. 511–516.

    Article  CAS  PubMed  Google Scholar 

  20. Naumov, G.I., Naumova, E.S., Sancho, E.D., and Korhola, M.P., Polymeric SUC genes in natural populations of Saccharomyces cerevisiae, FEMS Microbiol. Lett., 1996, vol. 135, pp. 31–35.

    Article  CAS  PubMed  Google Scholar 

  21. Ness, F. and Aigle, M., RTM1: a member of a new family of telomeric repeated genes in yeast, Genetics, 1995, vol. 140, pp. 945–956.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Naumova, E.S., Sadykova, A.Zh., Martynenko, N.N., and Naumov, G.I., Molecular genetic characteristics of Saccharomyces cerevisiae distillers’ yeasts, Microbiology (Moscow), 2013, vol. 82, pp. 175–185.

    Article  CAS  Google Scholar 

  23. Willstatter, R., Über Saccharase, Untersuchungen über Enzyme, Berlin, 1928, B. 1, p. 535.

    Google Scholar 

  24. Montenecourt, B.S., Kud, S.-C., and Lampen, J.O., Saccharomyces mutants with invertase formation resistant to repression by hexoses, J. Bacteriol., 1973, vol. 114, no. 1, pp. 233–238.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Hackel, R.A. and Khan, N.A., Genetic control of invertase formation in Saccharomyces cerevisiae II. Isolation and characterization of mutants conferring invertase hyperproduction in strain EK-6B carrying the SUC3 gene, Mol. Gen. Genet., 1978, vol. 164, pp. 295–302.

    Article  CAS  PubMed  Google Scholar 

  26. Carlson, M., Osmond, B.C., and Botstein, D., Mutants of yeast defective in sucrose utilization, Genetics, 1981, vol. 98, pp. 25–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Neigeborn, L. and Carlson, M., Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae, Genetics, 1984, vol. 108, pp. 845–858.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Carlson, M., Osmond, B.C., Neigeborn, L., and Botstein, D., A suppressor of snf1 mutations causes constitutive high-level invertase synthesis in yeast, Genetics, 1984, vol. 107, pp. 19–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Sarokin, L. and Carlson, M., Upstream region required for regulated expression of the glucose-repressible SUC2 gene of Saccharomyces cerevisiae, Mol. Cell Biol., 1984, vol. 4, no. 12, pp. 2750–2757.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Sarokin, L. and Carlson, M., Comparison of two yeast invertase genes: conservation of the upstream regulatory region, Nucleic Acids Res., 1985, vol. 13, pp. 6089–6103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Hohmann, S. and Gozalbo, D., Structural analysis of the 5′ regions of yeast SUC genes revealed analogous palindromes in SUC, MAL and GAL, Mol. Gen. Genet., 1988, vol. 211, pp. 446–454.

    Article  CAS  PubMed  Google Scholar 

  32. Parets-Soler, A., Base substitutions in the 5′ non-coding regions of two naturally occurring yeast invertase structural SUC genes cause strong differences in specific invertase activities, Curr. Genet., 1989, vol. 15, no. 3, pp. 299–301.

    Article  CAS  PubMed  Google Scholar 

  33. Gozalbo, D., Multiple copies of SUC4 regulatory regions may cause partial de-repression of invertase synthesis in Saccharomyces cerevisiae, Curr. Genet., 1992, vol. 21, pp. 437–442.

    Article  CAS  PubMed  Google Scholar 

  34. Grossman, M., Genetics of invertase formation, Yeast. A Newsletter for Persons Interested in Yeast, 1979, vol. 25, no. 1, pp. 25–26.

    Google Scholar 

  35. Zimmermann, F.K. and Shel, I., Mutant of Saccharomyces cerevisiae resistant to carbon catabolite repression, Mol. Gen. Genet., 1977, vol. 154, pp. 75–82.

    Article  CAS  PubMed  Google Scholar 

  36. Codón, A.C., Benítez, T., and Korhola, M., Chromosomal reorganization during meiosis of Saccharomyces cerevisiae baker’s yeasts, Curr. Genet., 1997, vol. 32, pp. 247–259.

    Article  PubMed  Google Scholar 

  37. Kretovich, V.L., Osnovy biokhimii rastenii (Basic Course in Plant Biochemistry), Moscow: Vyssh. Shkola, 1971.

    Google Scholar 

  38. Hu, N., Yuan, B., Sun, J., Wang, S.-A., and Li, F.-L., Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing, Appl. Microbiol. Biotechnol., 2012, vol. 95, pp. 1359–1368.

    Article  CAS  PubMed  Google Scholar 

  39. Yamamoto, K., Nakayama, A., Yamamoto, Y., and Tabata, S., Val216 decides the substrate specificity of α-glucosidase in Saccharomyces cerevisiae, Eur. J. Biochem., 2004, vol. 271, no. 16, pp. 3414–3420.

    Article  CAS  PubMed  Google Scholar 

  40. Naumov, G.I. and Naumoff, D.G., Molecular genetic differentiation of yeast α-glucosidases: maltase and isomaltase, Microbiology (Moscow), 2012, vol. 81, no. 3, pp. 276–280.

    Article  CAS  Google Scholar 

  41. Yurkevich, V.V. and Naumov, G.I., Levels of the enzymes hydrolyzing the sucrose β-fructoside bond and regulation of their formation in yeasts, Biol. Nauki, Nauchn. Dokl. Vyssh. Shkoly, 1969, no. 11, pp. 108–114.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Naumov.

Additional information

Original Russian Text © G.I. Naumov, E.S. Naumova, 2015, published in Mikrobiologiya, 2015, Vol. 84, No. 2, pp. 160–164.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumov, G.I., Naumova, E.S. Invertase overproduction may provide for inulin fermentation by selection strains of Saccharomyces cerevisiae . Microbiology 84, 130–134 (2015). https://doi.org/10.1134/S0026261715020095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261715020095

Keywords