Advertisement

Microbiology

, Volume 84, Issue 1, pp 1–22 | Cite as

Hydrogen in metabolism of purple bacteria and prospects of practical application

  • A. A. TsygankovEmail author
  • A. N. Khusnutdinova
Reviews

Abstract

Purple bacteria are able to use H2 for photoautotrophic, photomixotrophic, and chemoautotrophic growth, exhibiting high metabolic lability. Depending on the type of metabolism, hydrogen may be consumed with release of energy and/or reductive equivalents. Purple bacteria may also release H2 as a terminal electron acceptor or in the course of dinitrogen fixation. Thus, hydrogen metabolism in purple bacteria is diverse; these bacteria are often used as models for investigation of the metabolic traits and interrelation of the metabolic pathways involving molecular hydrogen. In this review, the present-day state of investigation of hydrogen metabolism in purple bacteria is reflected and its possible practical applications are discussed. Nitrogenase and hydrogenase, the major key enzymes of hydrogen metabolism, are discussed in brief. A generalized scheme of H2 role in the metabolism of purple bacteria is presented. Experimental approaches for investigation of the rates of hydrogen production are discussed. Immobilized systems are noted as the most promising approach for development of model systems for hydrogen production.

Keywords

purple bacteria hydrogen metabolism H2 production involving light energy hydrogenase nitrogenase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lyon, E.J., Shima, S., Buurman, G., Chowdhuri, S., Batschauer, A., Steinbach, K., and Thauer, R.K., UV-A/blue-light inactivation of the ‘metal-free’ hydrogenase (Hmd) from methanogenic archaea—the enzyme contains functional iron after all, Eur. J. Biochem., 2004, vol. 271, pp. 195–204.PubMedGoogle Scholar
  2. 2.
    Shima, S. and Thauer, R.K., A third type of hydrogenase catalyzing H2 activation, Chem. Record., 2007, vol. 7, pp. 37–46.Google Scholar
  3. 3.
    Vignais, P. and Billoud, B., Occurrence, classification, and biological function of hydrogenases: an overview, Chem. Rev., 2007, vol. 107, pp. 4206–4272.PubMedGoogle Scholar
  4. 4.
    Laurinavichene, T.V., Zorin, N.A., and Tsygankov, A.A., Effect of redox potential on activity of hydrogenase 1 and hydrogenase 2 in Escherichia coli, Arch. Microbiol., 2002, vol. 178, pp. 437–442.PubMedGoogle Scholar
  5. 5.
    Serebryakova, L.T. and Sheremetieva, M.E., Characterization of catalytic properties of hydrogenase isolated from the unicellular cyanobacterium Gloeocapsa alpicola Calu 743, Biochemistry (Moscow), 2006), vol. 71, pp. 1370–1376.Google Scholar
  6. 6.
    Meyer, J., [FeFe] hydrogenases and their evolution: a genomic perspective, Cell. Mol. Life Sci., 2007, vol. 64, pp. 1063–1084.PubMedGoogle Scholar
  7. 7.
    Abo-Hashesha, M., Sabourin-Provost, G., and Hallenbeck, P.C., HydA is inactive when overexpressed in Rhodospirillum rubrum but can be matured in Escherichia coli, Int. J. Hydr. Energy, vol. 38, pp. 11233–11240.Google Scholar
  8. 8.
    Kim, E.J., Lee, M.K., Kim, M.S., and Lee, J.K., Molecular hydrogen production by nitrogenase of Rhodobacter sphaeroides and by Fe-only hydrogenase of Rhodospirillum rubrum, Int. J. Hydrogen Energy, 2008, vol. 33, pp. 1516–1521.Google Scholar
  9. 9.
    Korbas, M., Vogt, S., Meyer-Klaucke, W., Bill, E., Lyon, E.J., Thauer, R.K., and Shima, S., The ironsulfur cluster-free hydrogenase (Hmd) is a metalloenzyme with a novel iron binding motif, J. Biol. Chem., 2006, vol. 281, pp. 30804–30813.PubMedGoogle Scholar
  10. 10.
    Kroger, A., Biel, S., Simon, J., Gross, R., Unden, G., and Lancaster, C.R.D., Fumarate respiration of Wolinella succinogenes: enzymology, energetics and coupling mechanism, Biochim. Biophys. Acta, 2002, vol. 1553, nos. 1–2, pp. 23–38.PubMedGoogle Scholar
  11. 11.
    Wu, L.F., Chanal, A., and Rodrigue, A., Membrane targeting and translocation of bacterial hydrogenases, Arch. Microbiol., 2000, vol. 173, no. 5, pp. 319–324.PubMedGoogle Scholar
  12. 12.
    Leclerc, M., Colbeau, A., Cauvin, B., and Vignais, P.M., Cloning and sequencing of the genes encoding the large and the small subunits of the H2 uptake hydrogenase (Hup) of Rhodobacter capsulatus, Mol. Gen. Genet., 1988, vol. 214, pp. 97–107.PubMedGoogle Scholar
  13. 13.
    Cauvin, B., Colbeau, A., and Vignais, P.M., The hydrogenase structural operon in Rhodobacter capsulatus contains a third gene, hupM, necessary for the formation of a physiologically competent hydrogenase, Mol. Microbiol., 1991, vol. 5, pp. 2519–2527.PubMedGoogle Scholar
  14. 14.
    Vignais, P.M., Billoud, B., and Meyer, J., Classification and phylogeny of hydrogenases, FEMS Microbiol. Rev., 2001, vol. 25, pp. 455–501.PubMedGoogle Scholar
  15. 15.
    Maness, P.C. and Weaver, P.F., Evidence for three distinct hydrogenase activities in Rhodospirillum rubrum, Appl. Microbiol. Biotechnol., 2001, vol. 57, pp. 751–756.PubMedGoogle Scholar
  16. 16.
    Colbeau, A., Kovacs, K.L., Chabert, J., and Vignais, P.M., Cloning and sequences of the structural (hupSLC) and accessory (hupDHI) genes for hydrogenase biosynthesis in Thiocapsa roseopersicina, Gene, 1994, vol. 140, pp. 25–31.PubMedGoogle Scholar
  17. 17.
    Uffen, R.L., Colbeau, A., Richaud, P., and Vignais, P.M., Cloning and sequencing the genes encoding uptake-hydrogenase subunits of Rhodocyclus gelatinosus, Mol. Gen. Genet., 1990, vol. 221, pp. 49–58.PubMedGoogle Scholar
  18. 18.
    Serebryakova, L.T., Zorin, N.A., and Gogotov, I.N., Isolation and properties of hydrogenase from Rhodopseudomonas capsulata, Biochemistry, 1984, vol. 49, no. 9, pp. 1241–1247.Google Scholar
  19. 19.
    Rakhely, G., Colbeau, A., Garin, J., Vignais, P.M., and Kovacs, K.L., Unusual organization of the genes coding for HydSL, the stable [NiFe] hydrogenase in the photosynthetic bacterium Thiocapsa roseopersicina BBS, J. Bacteriol., 1998, vol. 180, pp. 1460–1465.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Long, M.N., Liu, J.J., Chen, Z.F., Bleijlevens, B., Roseboom, W., and Albracht, S.P.J., Characterization of a hoxefuyh type of [NiFe] hydrogenase from Allochromatium vinosum and some EPR and IR properties of the hydrogenase module, J. Biol. Inorgan. Chem., 2007, vol. 12, pp. 62–78.Google Scholar
  21. 21.
    Kovacs, K.L., Fodor, B., Kovacs, A.T., Csanadi, G., Maroti, G., Balogh, J., Arvani, S., and Rakhely, G., Hydrogenases, accessory genes and the regulation of NiFe hydrogenase biosynthesis in Thiocapsa roseopersicina, Int. J. Hydrogen Energy, 2002, vol. 27, pp. 1463–1469.Google Scholar
  22. 22.
    Maroti, G., Fodor, B.D., Rakhely, G., Kovacs, A.T., Arvani, S., and Kovacs, K.L., Accessory proteins functioning selectively and pleiotropically in the biosynthesis of NiFe hydrogenases in Thiocapsa roseopersicina, Eur. J. Biochem., 2003, vol. 270, pp. 2218–2227.PubMedGoogle Scholar
  23. 23.
    Dahl, C., Rakhely, G., Pottsperling, A.S., Fodor, B., Takacs, M., Toth, A., Kraeling, M., Gyorfi, K., Kovacs, A., Tusz, J., and Kovacs, K.L., Genes involved in hydrogen and sulfur metabolism in phototrophic sulfur bacteria, FEMS Microbiol. Lett., 1999, vol. 180, pp. 317–324.PubMedGoogle Scholar
  24. 24.
    Laurinavichene, T.V., Rakhely, G., Kovacs, K.L., and Tsygankov, A.A., The effect of sulfur compounds on H2 evolution/consumption reactions, mediated by various hydrogenases, in the purple sulfur bacterium, Thiocapsa roseopersicina, Arch. Microbiol., 2007, vol. 188, pp. 403–410.Google Scholar
  25. 25.
    Gogotov, I.N., Zorin, N.A., Serebriakova, L.T., and Kondratieva, E.N., The properties of hydrogenase from Thiocapsa roseopersicina, Biochim. Biophys. Acta, 1978, vol. 523, pp. 335–343.PubMedGoogle Scholar
  26. 26.
    Szilagyi, A., Kovacs, K.L., Rakhely, G., and Zavodszky, P., Homology modeling reveals the structural background of the striking difference in thermal stability between two related NiFe hydrogenases, J. Mol. Modeling, 2002, vol. 8, pp. 58–64.Google Scholar
  27. 27.
    Pandelia, M.E., Lubitz, W., and Nitschke, W., Evolution and diversification of group 1 [NiFe] hydrogenases. Is there a phylogenetic marker for O2-tolerance?, Biochim. Biophys. Acta, 2012, vol. 1817, no. 9, pp. 1565–1575.PubMedGoogle Scholar
  28. 28.
    Fritsch, J., Scheerer, P., Frielingsdorf, S., Kroschinsky, S., Friedrich, B., Lenz, O., and Spahn, C.M.T., The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur center, Nature, 2011, vol. 479, pp. 249–252.PubMedGoogle Scholar
  29. 29.
    Vincent, K., Cracknell, J., Lenz, O., Zebger, I., Friedrich, B., and Armstrong, F., Electrocatalytic hydrogen oxidation by an enzyme at high carbon monoxide or oxygen levels, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, no. 47, pp. 16951–16954.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Goris, T., Wait, A.F., and Saggu, M., A unique ironsulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase, Nature Chem. Biol., 2011, vol. 7, no. 5, pp. 648–648.Google Scholar
  31. 31.
    Vignais, P.M., Dimon, B., Zorin, N.A., Colbeau, A., and Elsen, S., HupUV proteins of Rhodobacter capsulatus can bind H2: evidence from the H-D exchange reaction, J. Bacteriol., 1997, vol. 179, pp. 290–292.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Kovacs, A.T., Rakhely, G., Balogh, J., Maroti, G., Cournac, L., Carrier, P., Meszaros, L.S., Peltier, G., and Kovacs, K.L., Hydrogen independent expression of HupSL genes in Thiocapsa roseopersicina BBS, FEBS J., 2005, vol. 272, pp. 4807–4816.PubMedGoogle Scholar
  33. 33.
    Fritsch, J., Lenz, O., and Friedrich, B., Structure, function and biosynthesis of O2-tolerant hydrogenases, Nature Rev. Microbiol., 2013, vol. 11, pp. 106–114.Google Scholar
  34. 34.
    Duche, O., Elsen, S., Cournac, L., and Colbeau, A., Enlarging the gas access channel to the active site renders the regulatory hydrogenase HupUV of Rhodobacter capsulatus O2 sensitive without affecting its transductory activity, FEBS J., 2005, vol. 272, pp. 3899–3908.PubMedGoogle Scholar
  35. 35.
    Rakhely, G., Kovacs, A.T., Maroti, G., Fodor, B.D., Csanadi, G., Latinovics, D., and Kovacs, K.L., Cyanobacterial-type, heteropentameric, NAD(+)-reducing NiFe hydrogenase in the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina, Appl. Environ. Microbiol., 2004, vol. 70, pp. 722–728.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Appel, J. and Schulz, R., Hydrogen metabolism in organisms with oxygenic photosynthesis: hydrogenases as important regulatory devices for a proper redox poising?, J. Photochem. Photobiol., 1998, vol. 47, pp. 1–11.Google Scholar
  37. 37.
    Rakhely, G., Laurinavichene, T.V., Tsygankov, A.A., and Kovacs, K.L., The role of Hox hydrogenase in the H2 metabolism of Thiocapsa roseopersicina, BBA-Bioenergetics, 2007, vol. 1767, pp. 671–676.PubMedGoogle Scholar
  38. 38.
    Ma, K., Schicho, R.N., Kelly, R.M., and Adams, M.W., Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: Evidence for a sulfur-reducing hydrogenase ancestor, Proc. Natl. Acad. Sci. U. S. A., 1993, vol. 90, no. 11, pp. 5341–5344.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Singer, S.W., Hirst, M.B., and Ludden, P.W., Codependent H2 evolution by Rhodospirillum rubrum: role of CODH: CooF complex, BBA-Bioenergetics, 2006, vol. 1757, pp. 1582–1591.PubMedGoogle Scholar
  40. 40.
    Sipma, J., Henstra, A.M., Parshina, S.N., Lens, P.N.L., Lettinga, G., and Stams, A.J.M., Microbial CO conversions with applications in synthesis gas purification and bio-desulfurization, Crit. Rev. Biotechnol., 2006, vol. 26, pp. 41–65.PubMedGoogle Scholar
  41. 41.
    Oh, Y.K., Kim, Y.J., Park, J.Y., Lee, T.H., Kim, M.S., and Park, S., Biohydrogen production from carbon monoxide and water by Rhodopseudomonas palustris P4, Biotechnol. Bioproc. Eng., 2005, vol. 10, pp. 270–274.Google Scholar
  42. 42.
    Maeda, T., Sanchez-Torres, V., and Wood, T.K., Metabolic engineering to enhance bacterial hydrogen production, Microb. Biotechnol., 2008, vol. 1, no. 1, pp. 30–39.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Constant, P., Poissant, L., and Villemur, R., Isolation of Streptomyces sp. PCB7, the first microorganism demonstrating high-affinity uptake of tropospheric H2, ISME J., 2008, vol. 2, no. 10, pp. 1066–1076.PubMedGoogle Scholar
  44. 44.
    Constant, P., Chowdhury, S.P., Hesse, L., Pratscher, J., and Conrad, R., Genome data mining and soil survey for the novel group 5 [NiFe]-hydrogenase to explore the diversity and ecological importance of presumptive high affinity H2-oxidizing bacteria, Appl. Environ. Microbiol., 2011, vol. 77, no. 17, pp. 6027–6035.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Bock, A., King, P.W., Blokesch, M., and Posewitz, M.C., Maturation of hydrogenases, Adv. Microb. Physiol., 2006, vol. 51, pp. 1–71.PubMedGoogle Scholar
  46. 46.
    Leach, M.R. and Zamble, D.B., Metallocenter assembly of the hydrogenase enzymes, Curr. Opin. Chem. Biol., 2007, vol. 11, pp. 159–165.PubMedGoogle Scholar
  47. 47.
    Wu, L.F., Berthelot, M.A., Waugh, R., Edmonds, C.J., Holt, S.E., and Boxer, D.H., Nickel deficiency gives rise to the defective hydrogenase phenotype of hydC and fnr mutants in Escherichia coli, Mol. Microbiol., 1989, vol. 3, pp. 1709–1718.PubMedGoogle Scholar
  48. 48.
    Olson, J.W., Fu, C.L., and Maier, R.J., The HypB protein from Bradyrhizobium japonicum can store nickel and is required for the nickel-dependent transcriptional regulation of hydrogenase, Mol. Microbiol., 1997, vol. 24, pp. 119–128.PubMedGoogle Scholar
  49. 49.
    Fontecave, M., Choudens, S.O., Py, B., and Barras, F., Mechanisms of iron-sulfur cluster assembly: the SUF machinery, J. Biol. Inorg. Chem., 2005, vol. 10, pp. 713–721.PubMedGoogle Scholar
  50. 50.
    Schubert, T., Lenz, O., Krause, E., Volkmer, R., and Friedrich, B., Chaperones specific for the membranebound [NiFe]-hydrogenase interact with the Tat signal peptide of the small subunit precursor in Ralstonia eutropha H16, Mol. Microbiol., 2007, vol. 66, pp. 453–467.PubMedGoogle Scholar
  51. 51.
    Fritsch, J., Lenz, O., and Friedrich, B., Structure, function and biosynthesis of O2-tolerant hydrogenases, Nature Rev. Microbiol., 2013, vol. 11, pp. 106–114.Google Scholar
  52. 52.
    Parkin, A. and Sargent, F., The hows and whys of aerobic H2 metabolism, Curr. Opin. Chem. Biol., 2012, vol. 16, pp. 26–34.PubMedGoogle Scholar
  53. 53.
    Friedrich, B., Vignais, P., Lenz, O., and Colbeau, A., Regulation of hydrogenase gene expression, in Hydrogen as a Fuel: Learning from Nature, Cammack, R., Frey, M., and Robson, R., Eds., London: Taylor&Francis, 2001, pp. 33–56.Google Scholar
  54. 54.
    Hoch, J.A. and Varughese, K.I., Keeping signals straight in phosphorelay signal transduction, J. Bacteriol., 2001, vol. 183, pp. 4941–4949.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Vignais, P.M., Elsen, S., and Colbeau, A., Transcriptional regulation of the uptake [NiFe] hydrogenase genes in Rhodobacter capsulatus, Biochem. Soc. Trans., 2005, vol. 33, pp. 28–32.PubMedGoogle Scholar
  56. 56.
    Rey, F.E., Oda, Y., and Harwood, C.S., Regulation of uptake hydrogenase and effects of hydrogen utilization on gene expression in Rhodopseudomonas palustris, J. Bacteriol., 2006, vol. 188, pp. 6143–6152.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Laurinavichene, T.V., Vasileva, L.G., Tsygankov, A.A., and Gogotov, I.N., The purple nonsulfur bacterium Rhodobacter sphaeroides, isolated from the rice field soil of South Vietnam, Microbiology (Moscow), 1988, vol. 57, pp. 810–815.Google Scholar
  58. 58.
    Tsygankov, A.A. and Gogotov, I.N., Influence of temperature and pH of the medium on the nitrogenase and hydrogenase activity of Rhodopseudomonas capsulata in nitrogen fixation, Microbiology (Moscow), 1982, vol. 51, no. 3, pp. 325–330.Google Scholar
  59. 59.
    Tsygankov, A.A., Gogotov, I.N., and Kondratieva, E.N., Growth of Rhodopseudomonas capsulata and its synthesis of hydrogenase under conditions of continuous culturing, Microbiology (Moscow), 1984, vol. 53, pp. 306–312.Google Scholar
  60. 60.
    Elsen, S., Colbeau, A., Chabert, J., and Vignais, P.M., The hupTUV operon is involved in negative control of hydrogenase synthesis in Rhodobacter capsulatus, J. Bacteriol., 1996, vol. 178, pp. 5174–5181.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Tsygankov, A.A., Yakunin, A.F., and Gogotov, I.N., Hydrogenase activity of Rhodopseudomonas capsulata growing in organic media, Mikrobiologiya, 1982, vol. 51, pp. 533–537.Google Scholar
  62. 62.
    Iuchi, S. and Lin, E.C., Adaptation of Escherichia coli to redox environments by gene expression, Mol. Microbiol., 1993, vol. 9, pp. 9–15.PubMedGoogle Scholar
  63. 63.
    Khoroshilova, N., Popescu, C., Munck, E., Beinert, H., and Kiley, P.J., Iron-sulfur cluster disassembly in the FNR protein of Escherichia coli by O2: [4Fe-4S] to [2Fe-2S] conversion with loss of biological activity, Proc. Natl. Acad. Sci. U. S. A., 1997, vol. 94, pp. 6087–6092.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Kondrat’eva, E.N. and Gogotov, I.N., Molekulyarnyi vodorod v metabolizme mikroorganizmov (Molecular Hydrogen in Microbial Metabolism), Moscow: Nauka, 1981.Google Scholar
  65. 65.
    Kovacs, A.T., Rakhely, G., Browning, D.F., Fulop, A., Maroti, G., Busby, S.J.W., and Kovacs, K.L., An FNR-type regulator controls the anaerobic expression of hyn hydrogenase in Thiocapsa roseopersicina, J. Bacteriol., 2005, vol. 187, pp. 2618–2627.PubMedCentralPubMedGoogle Scholar
  66. 66.
    Roberts, G.P., Youn, H., and Kerby, R.L., CO-sensing mechanisms, Micrbiol. Mol. Biol. Rev., 2004, vol. 68, pp. 453–473.Google Scholar
  67. 67.
    Shelver, D., Kerby, R.L., He, Y.P., and Roberts, G.P., CooA, a CO-sensing transcription factor from Rhodospirillum rubrum, is a CO-binding heme protein, Proc. Natl. Acad. Sci. U. S. A., 1997, vol. 94, pp. 11216–11220.PubMedCentralPubMedGoogle Scholar
  68. 68.
    Joshi, H.M. and Tabita, F.R., A global two component signal transduction system that integrates the control of photosynthesis, carbon dioxide assimilation, and nitrogen fixation, Proc. Natl. Acad. Sci. U. S. A., 1996, vol. 93, pp. 14515–14520.PubMedCentralPubMedGoogle Scholar
  69. 69.
    Elsen, S., Dischert, W., Colbeau, A., and Bauer, C.E., Expression of uptake hydrogenase and molybdenum nitrogenase in Rhodobacter capsulatus is coregulated by the RegB-RegA two-component regulatory system, J. Bacteriol., 2000, vol. 182, pp. 2831–2837.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Du, S., Bird, T., and Bauer, C.E., DNA binding characteristics of RegA: a constitutively active anaerobic activator of photosynthesis gene expression in Rhodobacter capsulatus, J. Biol. Chem., 1998, vol. 273, pp. 18509–18513.PubMedGoogle Scholar
  71. 71.
    Bird, T., Du, S., and Bauer, C.E., Autophosphorylation, phosphotransfer, and DNA-binding properties of the RegB/RegA two-component regulatory system in Rhodobacter capsulatus, J. Biol. Chem., 1999, vol. 274, pp. 16343–16348.PubMedGoogle Scholar
  72. 72.
    Eady, R.R., Current status of structure function relationships of vanadium nitrogenase, Coord. Chem. Rev., 2003, vol. 237, pp. 23–30.Google Scholar
  73. 73.
    Hoffman, B.M., Dean, D.R., and Seefeldt, L.C., Climbing nitrogenase: toward a mechanism of enzymatic nitrogen fixation, Acc. Chem. Res., 2009, vol. 42, pp. 609–619.PubMedCentralPubMedGoogle Scholar
  74. 74.
    Seefeldt, L.C., Hoffman, B.M., and Dean, D.R., Mechanism of Mo-dependent nitrogenase, Ann. Rev. Biochem., 2009, vol. 78, pp. 701–722.PubMedCentralPubMedGoogle Scholar
  75. 75.
    Tsygankov, A.A. and Laurinavichene, T.V., Growth and nitrogen fixation by Rhodobacter capsulatus in the presence and absence of Mo, Mikrobiologiya, 1993, vol. 62, pp. 855–862.Google Scholar
  76. 76.
    Siefert, E. and Pfennig, N., Hydrogen metabolism and nitrogen fixation in wild type and Nif-mutants of Rhodopseudomonas acidophila, Biochimie, 1978, vol. 60, pp. 261–265.PubMedGoogle Scholar
  77. 77.
    Oda, K., Samanta, S.K., Rey, F.E., Wu, L., Yan, T., Zhou, J., and Harwood, C.S., Functional genomic analysis of three nitrogenase isozymes in the photosynthetic bacterium Rhodopseudomonas palustris, J. Bacteriol., 2005, vol. 187, pp. 7784–7794.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Robson, R.L., Woodley, P.R., Pau, R.N., and Eady, R.R., Structural genes for the vanadium nitrogenase from Azotobacter chroococcum, EMBO J., 1989, vol. 8, pp. 1217–1224.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Schneider, K., Muller, A., Schramm, U., and Klipp, W., Demonstration of a molybdenum-independent and vanadium-independent nitrogenase in a nifhDKdeletion mutant of Rhodobacter capsulatus, Eur. J. Biochem., 1991, vol. 195, pp. 653–661.PubMedGoogle Scholar
  80. 80.
    Yakunin, A.F., Tsygankov, A.A., Troshina, O.Yu., and Gogotov, I.N., Growth and nitrogenase activity of Rhodobacter capsulatus and Rhodobacter sphaeroides in continuous cultures depending on the presence of Mo, W, and V, in the medium, Mikrobiologiya, 1991, vol. 60, pp. 41–46.Google Scholar
  81. 81.
    Lehman, L.J. and Roberts, G.P., Identification of an alternative nitrogenase system in Rhodospirillum rubrum, J. Bacteriol., 1991, vol. 173, pp. 5705–5711.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Tsygankov, A.A. and Laurinavichene, T.V., Growth and nitrogenase activity in Rhodobacter capsulatus depending on pH and illumination in the presence and absence of Mo, Mikrobiologiya, 1996, vol. 65, pp. 499–504.Google Scholar
  83. 83.
    Hinnemann, B. and Norskov, J.K., Catalysis by enzymes: the biological ammonia synthesis, Top. Catal., 2006, vol. 37, pp. 55–70.Google Scholar
  84. 84.
    Zinchenko, V.V., Genetic regulation of nitrogen assimilation in photosynthetic bacteria, Russ. J. Genet. 1999 vol. 35, no. 11, pp. 1287–1301.Google Scholar
  85. 85.
    Shestakov, S.V. and Mikheeva, L.E., Genetic control of hydrogen metabolism in cyanobacteria, Russ. J. Genet., 2006, vol. 42, no. 11, pp. 1272–1284.Google Scholar
  86. 86.
    Zurrer, H. and Bachofen, R., Aspects of growth and hydrogen production of the photosynthetic bacterium Rhodospirillum rubrum in continuous culture, Biomass, 1982, vol. 2, pp. 165–174.Google Scholar
  87. 87.
    Tsygankov, A.A., Fedorov, A.S., Laurinavichene, T.V., Gogotov, I.N., Rao, K.K., and Hall, D.O., Actual and potential rates of hydrogen photoproduction by continuous culture of the purple non-sulphur bacterium Rhodobacter capsulatus, Appl. Microbiol. Biotechnol., 1998, vol. 49, pp. 102–107.Google Scholar
  88. 88.
    Basak, N., Jana, A.K., Das, D., and Saikia, D., Photofermentative molecular hydrogen production by purple non sulfur (PNS) bacteria in various modes: The present progress an future perspective, Int. J. Hydrogen Energy, 2014. http://dx.doi.org/ 10.1016/j.ijhydene.2014.02.093 Google Scholar
  89. 89.
    Tsygankov, A., Hydrogen production by purple bacteria: immobilized vs suspension cultures, in Biohydrogen 2. An Approach to Environmentally Acceptable Technology, Miyake, J., Matsunaga, T., and San Pietro, A., Eds., Amsterdam: Pergamon, 2001, pp. 229–244.Google Scholar
  90. 90.
    Rocha, J., Barbosa, H.R., and Wijffels, R.H., Hydrogen production by photosynthetic bacteria: culture media, yields and efficiencies, in Biohydrogen 2. An Approach to Environmentally Acceptable Technology, Miyake, J., Matsunaga, T., and San Pietro, A., Eds., Amsterdam: Pergamon, 2001, pp. 3–32.Google Scholar
  91. 91.
    Tsygankov, A.A. and Laurinavichene, T.V., Influence of the degree and mode of light limitation on growth characteristics of the Rhodobacter capsulatus continuous cultures, Biotechn. Bioeng., 1996, vol. 51, pp. 605–612.Google Scholar
  92. 92.
    Tsygankov, A., Laurinavichene, T., Gogotov, I., Asada, Y., and Miyake, J., Switching over from light limitation to ammonium limitation of chemostat cultures of Rhodobacter capsulatus grown in different types of photobioreactors, J. Marine Biotechnol., 1996, vol. 4, pp. 43–46.Google Scholar
  93. 93.
    Gokce, A., Osturk, Y., Cakar, Z.P., and Yucel, M., Temperature resistant mutants of Rhodobacter capsulatus generated by direct evolution approach and effects of temperature resistance on hydrogen production, Int. J. Hydrogen Energy, 2012, vol. 37, pp. 15466–16472.Google Scholar
  94. 94.
    Merugu, R., Pratar Rudra, M.P., Badgu, N., Girisham, S., and Reddy, S.M., Factors influencing the production of hydrogen by the purple non-sulphur phototrophic bacterium Rhodopseudomonas acidophila KU001, Microb. Biotechnol., 2012, vol. 5, no. 6, pp. 674–678.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Laurinavichene, T.V., Tekucheva, D.N., Laurinavichius, K.S., Ghirardi, M.L., Seibert, M., and Tsygankov, A.A., Towards the integration of dark and photo fermentative waste treatment 1. Hydrogen photoproduction by purple bacterium Rhodobacter capsulatus using potential products of starch fermentation, Int. J. Hydrogen Energy, 2008, vol. 33, pp. 7020–7026.Google Scholar
  96. 96.
    Kapdan, I.K. and Kargi, F., Bio-hydrogen production from waste materials, Enzyme Microb. Technol. 2006, vol. 38, pp. 569–582.Google Scholar
  97. 97.
    Adessi, A. and De Philips, R., Photobioreactor design and illumination systems for H2 production with anoxygenic photosynthetic bacteria: a review, Int. J. Hydrogen Energy, 2014, vol. 39, pp. 3127–2141.Google Scholar
  98. 98.
    Hillmer, P. and Gest, H., H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells, J. Bacteriol., 1977, vol. 129, pp. 732–739.PubMedCentralPubMedGoogle Scholar
  99. 99.
    Weaver, P.F., Lien, S., and Seibert, M., Photobiological production of hydrogen, Solar Energy, 1980, vol. 24, pp. 3–45.Google Scholar
  100. 100.
    Miyake, J. and Kawamura, S., Efficiency of light energy conversion to hydrogen by the photosynthetic bacterium Rhodobacter sphaeroides, Int. J. Hydrogen Energy, 1987, vol. 12, pp. 147–149.Google Scholar
  101. 101.
    Kern, M., Klipp, W., and Klemme, J.H., Increased nitrogenase-dependent H2 photoproduction by hup mutants of Rhodospirillum rubrum, App. Environ. Microbiol., 1994, vol. 60, pp. 1768–1774.Google Scholar
  102. 102.
    Fascetti, E. and Todini, O., Rhodobacter RV cultivation and hydrogen production in one- and two-stage chemostat, Appl. Microbiol. Biotechnol., 1995, vol. 20, pp. 300–305.Google Scholar
  103. 103.
    Zorin, N.A., Lissolo, T., Colbeau, A., and Vignais, P.M., Increased hydrogen photoproduction by Rhodobacter capsulatus strains deficient in uptake hydrogenase, J. Mar. Biotechnol., 1996, vol. 4, pp. 28–33.Google Scholar
  104. 104.
    Kohring, G.W., Fissler, J., Schirra, C., and Giffhorn, F., Hydrogen production from aromatic acids by liquid cultures and immobilized cells of Rhodopseudomonas palustris, in 11th World Hydrogen Energy Conf., 23–28 June, 1996, Germany, Stuttgart, 1996, pp. 2743–2748.Google Scholar
  105. 105.
    Franchi, E., Tosi, C., Scolla, G., Della Penna, G., Rodriguez, F., and Pedroni, P.M., Metabolically engineered Rhodobacter sphaeroides RV strains for improved biohydrogen photoproduction combined with disposal of food wastes, Marine Biotechnol., 2004, vol. 6, pp. 552–565.Google Scholar
  106. 106.
    Lee, J.Z., Klaus, D.M., Maness, P.C., and Spear, J.R., The effect of butyrate concentration on hydrogen production via photofermentation for use in a Martian habitat resource recovery process, Int. J. Hydrogen Energy, 2007, vol. 32, pp. 3301–3307.Google Scholar
  107. 107.
    Ryu, M.H., Hull, N.C., and Gomelsky, M., Metabolic engineering of Rhodobacter sphaeroides for improved hydrogen production, Int. J. Hydrogen Energy, 2014, vol. 39, pp. 6384–6390.Google Scholar
  108. 108.
    Eltsova, Z.A., Vasilieva, L.G., and Tsygankov, A.A., Hydrogen production by recombinant strains of Rhodobacter sphaeroides using modified photosynthetic apparatus, Appl. Biochem. Microbiol., 2010, vol. 46, no. 5, pp. 487–491.Google Scholar
  109. 109.
    Tsygankov, A. and Kosourov, S., Immobilization of photosynthetic microorganisms for efficient hydrogen production, in Microbial BioEnergy: Hydrogen Production. Advances in Photosynthesis and Respiration, vol. 38, Zannoni, D. and De Philippis, R., Eds., Springer, 2014, pp. 321–347.Google Scholar
  110. 110.
    Vincenzini, M., Materassi, R., Tredici, M.R., and Florenzano, G., Hydrogen production by immobilized cell. I. Light-dependent dissimilation of organic substances by Rhodopseudomonas palustris, Int. J. Hydrogen Energy, 1982, vol. 7, pp. 231–236.Google Scholar
  111. 111.
    Francou, N. and Vignais, P.M., Hydrogen production by Rhodopseudomonas capsulata cells entrapped in carrageenan beads, Biotechnol. Lett., 1984, vol. 6, pp. 639–644.Google Scholar
  112. 112.
    Hallenbeck, P.C., Immobilized microorganisms for hydrogen and ammonia production, Enzyme Microb. Technol., 1983, vol. 5, pp. 171–180.Google Scholar
  113. 113.
    Gosse, J.L., Engel, B.J., Rey, F.E., Harwood, C.S., Scriven, L.E., and Flickinger, M.C., Hydrogen production by photoreactive nanoporous latex coatings of nongrowing Rhodopseudomonas palustris CGA009, Biotechnol. Prog., 2007, vol. 23, pp. 124–130.PubMedGoogle Scholar
  114. 114.
    Laurinavichene, T.V., Fedorov, A.S., Ghirardi, M.L., Seibert, M., and Tsygankov, A.A., Demonstration of sustained hydrogen photoproduction by immobilized, sulfur-deprived Chlamydomonas reinhardtii cells, Int. J. Hydrogen Energy, 2006, vol. 31, pp. 659–667.Google Scholar
  115. 115.
    Tsygankov, A.A., Hirata, Y., Miyake, M., Asada, Y., and Miyake, J., Photobioreactor with photosynthetic bacteria immobilized on porous glass for hydrogen photoproduction, J. Ferment. Bioeng., 1994, vol. 77, pp. 575–578.Google Scholar
  116. 116.
    Tsygankov, A.A., Fedorov, A.S., Talipova, I.V., Miyaki, D., and Gogotov, I.N., Use of immobilized phototrophic microorganisms for water treatment and simultaneous production of hydrogen, Appl. Biochem. Microbiol., 1998, vol. 34, pp. 362–366.Google Scholar
  117. 117.
    Zagrodnik, R., Thiel, M., Seifert, K., Włodarczak M., and Łaniecki, M., Application of immobilized Rhodobacter sphaeroides bacteria in hydrogen generation process under semi-continuous conditions, Int. J. Hydrogen Energy, 2013, vol. 38, pp. 7632–7639.Google Scholar
  118. 118.
    Tsygankov, A., Hydrogen production by suspension and immobilized cultures of phototrophic microorganisms. Technological aspects, in Biohydrogen III. Renewable Energy System by Biological Solar Energy Conversion, Miyake, J., Igarashi, H., and Rogner, M., Eds., Elsevier, 2004, pp. 57–74.Google Scholar
  119. 119.
    Serebryakova, L.T. and Tsygankov, A.A., Two-stage system for hydrogen production by immobilized cyanobacterium Gloeocapsa alpicola CALU 743, Biotechnol. Prog., 2007, vol. 23, pp. 1106–1110.PubMedGoogle Scholar
  120. 120.
    Tekucheva, D.N., Laurinavichene, T.V., Seibert, M., and Tsygankov, A.A., Immobilized purple bacteria for light-driven H2 production from starch and potato fermentation effluent, Biotechnol. Prog., 2011, vol. 27, no. 5, pp. 568–599.Google Scholar
  121. 121.
    Fedorov, A., Tsygankov, A., Rao, K.K., and Hall, D.O., Hydrogen photoproduction by Rhodobacter capsulatus immobilized on polyurethane foam, Biotechnol. Lett., 1998, vol. 20, pp. 1007–1009.Google Scholar
  122. 122.
    Planchard, A., Mignot, L., Jouenne, T., and Junter, G.A., Photoproduction of molecular hydrogen by Rhodospirillum rubrum immobilized in composite agar layer/microporous membrane structures, Appl. Microbiol. Biotechnol., 1984, vol. 31, pp. 49–54.Google Scholar
  123. 123.
    von Felten, P., Zurrer, H., and Bachofen, R., Production of molecular hydrogen with immobilized cells of Rhodospirillum rubrum, Appl. Microbiol. Biotechnol., 1985, vol. 23, pp. 15–20.Google Scholar
  124. 124.
    Levin, D.B., Biohydrogen production: prospects and limitations to practical application—erratum, Int. J. Hydrogen Energy, 2004, vol. 29, pp. 1425–1426.Google Scholar
  125. 125.
    Levin, D.B., Pitt, L., and Love, M., Biohydrogen production: prospects and limitations to practical application, Int. J. Hydrogen Energy, 2004, vol. 29, pp. 173–185.Google Scholar
  126. 126.
    Tsygankov, A.A. and Khusnutdinova, A.N., Hydrogen metabolism in purple bacteria and its possible practical application, in Trudy Instituta mikrobiologii im. Vinogradskogo RAN (Proc. Winogradsky Inst. Microbiol.), vol. 16, Gal’chenko, V.F., Ed., Moscow: Maks Press, 2010, pp. 290–326.Google Scholar
  127. 127.
    Tsygankov, A.A. and Gogotov, I.N., Production of purple bacteria biomass, Appl. Biochem. Microbiol., 1990, vol. 26, pp. 819–824.Google Scholar
  128. 128.
    Tao, Y., He, Y., Wu, Y., Liu, F., Li, X., Zong, W., and Zhou, Z., Characteristics of a new photosynthetic bacterial strain for hydrogen production and its application in wastewater treatment, Int. J. Hydrogen Energy, 2008, vol. 33, pp. 963–973.Google Scholar
  129. 129.
    Zhu, H., Suzuki, T., Tsygankov, A., Asada, Y., and Miyake, J., Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized on agar gel, Int. J. Hydrogen Energy, 1999, vol. 24, pp. 305–310.Google Scholar
  130. 130.
    Tekucheva, D.N. and Tsygankov, A.A., Combined biological hydrogen-producing systems: a review, Appl. Biochem. Microbiol., 2012, vol. 48, no. 4, pp. 319–337.Google Scholar
  131. 131.
    Miyake, J., Mao, X.Y., and Kawamura, S., Hydrogen photoproduction from glucose by a co-culture of a photosynthetic bacteria and Clostridium butyricum, J. Ferment. Technol., 1984, vol. 62, pp. 531–535.Google Scholar
  132. 132.
    Asada, Y., Tokumoto, M., Aihara, Y., Oku, M., Ishimi, K., Wakayama, T., Miyake, J., Tomiyama, M., and Kohno, H., Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV, Int. J. Hydrogen Energy, 2006, vol. 31, pp. 1509–1513.Google Scholar
  133. 133.
    Kawaguchi, H., Hashimoto, K., Hirata, K., and Miyamoto, K., H2 production from algal biomass by mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus, J. Biosci. Bioeng., 2001, vol. 91, pp. 277–282.PubMedGoogle Scholar
  134. 134.
    Yokoi, H., Mori, S., Hirose, J., Hayashi, S., and Takasaki, Y., H2 production from starch by mixed culture of Clostridium butyricum and Rhodobacter sp. M-19, Biotechnol. Lett., 1998, vol. 20, pp. 895–899.Google Scholar
  135. 135.
    Zhang, T., Liu, H., and Fang, H.H.P., Microbial analysis of a phototrophic sludge producing hydrogen from acidified wastewater, Biotechnol. Lett., 2002, vol. 24, pp. 1833–1837.Google Scholar
  136. 136.
    Claassen, P.A.M. and de Vrije, T., Non-thermal production of pure hydrogen from biomass: HYVOLU-TION, Int. J. Hydrogen Energy, 2006, vol. 31, pp. 1416–1423.Google Scholar
  137. 137.
    Kim, M.S., Lee, T.J., Yoon, Y.S., Lee, I.G., and Moon, K.W., Hydrogen production from food processing wastewater and sewage sludge by anaeroibic dark fermentation combined with photo-fermentation, in Biohydrogen II. An Approach to Environmentally Acceptable Technology, Miyake, J., Matsunaga, T., and San Pietro, A., Eds., Amsterdam: Pergamon, 2001, pp. 263–272.Google Scholar
  138. 138.
    Kulichevskaya, I.S., Gusev, V.S., Gorlenko, M.V., Liesack, W., and Dedysh, S.N., Rhodoblastus sphagnicola sp. nov., a novel acidophilic purple non-sulfur bacterium from Sphagnum peat bog, Int. J. Syst. Evol. Microbiol., 2006, vol. 56, pp. 1397–1402.PubMedGoogle Scholar
  139. 139.
    Laurinavichene, T.V., Belokopytov, B.F., Laurinavichius, K.S., Tekucheva, D.N., Ghirardi, M.L., Seibert, M., and Tsygankov, A.A., Towards the integration of darkand photo-fermentative waste treatment. 3. Potato as substrate for sequential dark fermentation and light-driven H2 production, Int. J. Hydrogen Energy, 2010, vol. 35, pp. 8536–8543.Google Scholar
  140. 140.
    Maeda, I., Mizoguchi, T., Miura, Y., Yagi, K., Shioji, N., and Miyasaka, H., Influence of sulfatereducing bacteria on outdoor hydrogen production by photosynthetic bacterium with seawater, Curr. Microbiol., 2000, vol. 40, pp. 210–213.PubMedGoogle Scholar
  141. 141.
    Laurinavichene, T., Laurinavichius, K., Belokopytov, B., Laurinavichyute, D., and Tsygankov, A., Influence of sulfate-reducing bacteria, sulfide and molybdate on hydrogen photoproduction by purple nonsulfur bacteria, Int. J. Hydrogen Energy, 2013, vol. 38, pp. 5545-5554.Google Scholar
  142. 142.
    Golomysova, A., Gomelsky, M., and Ivanov, P.S., Flux balance analysis of photoheterotrophic growth of purple nonsulfur bacteria relevant to biohydrogen production, Int. J. Hydrogen Energy, 2010, vol. 35, no. 23, pp. 12751–12760.Google Scholar
  143. 143.
    Kars, G., Gunduz, U., Rakhely, G., Yucel, M., Eroglu, I., and Kovacs, K.L., Improved hydrogen production by uptake hydrogenase deficient mutant strain of Rhodobacter sphaeroides OU001, Int. J. Hydrogen Energy, 2008, vol. 33, pp. 3056–3060.Google Scholar
  144. 144.
    Kars, G., Rakhely, G., and Kovacs, K.L., Evaluation of hydrogen production by Rhodobacter sphaeroides O.U.001 and its hupSL deficient mutant using acetate and malate as carbon sources, Int. J. Hydrogen Energy, 2009, vol. 34, pp. 2184–2190.Google Scholar
  145. 145.
    Kim, M.S., Baek, J.S., and Lee, J., Comparison of H2 accumulation by Rhodobacter sphaeroides KD131 and its uptake hydrogenase and PHB synthase deficient mutant, Int. J. Hydrogen Energy, 2006, vol. 31, pp. 121–127.Google Scholar
  146. 146.
    Li, R.Y. and Fang, H.H.R., Hydrogen production characteristics of photoheterotrophic Rubrivivax gelatinosus L31, Int. J. Hydrogen Energy, 2008, vol. 33, pp. 974–980.Google Scholar
  147. 147.
    Khusnutdinova, A., Ovchenkova, E., Khristova, A., Laurinavichene, T., Shastik, E., Liu, J., and Tsygankov, A., New tolerant strains of purple nonsulfur bacteria for hydrogen production in a two-stage integrated system, Int. J. Hydrogen Energy, 2012, vol. 37, pp. 8820–8827.Google Scholar
  148. 148.
    Wang, Z., Hu, X., Liao, Q., Ye, J., Zhang, B., and Yin, Y., Identification, culture characteristics and hydrogen-producing ability analysis of several purple non-sulfur bacterial strains, Chinese J. Appl. Environ. Biol., 2009, vol. 15, pp. 120–124.Google Scholar
  149. 149.
    Kim, E.J., Kim, J.S., Kim, M.S., and Lee, J.K., Effect of changes in the level of light harvesting complexes of Rhodobacter sphaeroides on the photoheterotrophic production of hydrogen, Int. J. Hydrogen Energy, 2006, vol. 31, pp. 531–538.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Institute of Basic Biological Problems Russian Academy of SciencesPushchinoRussia

Personalised recommendations