Skip to main content
Log in

Production of gaseous hydrocarbons by microbial communities of Lake Baikal bottom sediments

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Production of gaseous hydrocarbons by the microbial community of the Posolsky Bank methane seep bottom sediments (southern Baikal) was studied at 4°C. Formation of both methane and a heavier gaseous hydrocarbon, ethane, was detected in enrichment cultures. The highest methane concentrations (6.15 and 4.51 mmol L−1) were revealed in enrichments from the sediments from 55-cm depth incubated with sodium acetate and H2/CO2 gas mixture, respectively. A decrease in activity of aceticlastic methanogens and a decrease in methane concentration produced by hydrogenotrophic archaea occurred with depth. The highest concentration of ethane was revealed in enrichments from the microbial community of the layer close to gas hydrates (75 cm) incubated with CO2 as a substrate. According to analysis of the 16S rRNA gene fragments from the clone library, these enrichments were found to contain members of the phylum Crenarchaeota forming a separate cluster with members of the class Thermoprotei. The phylum Euryarchaeota was represented by nucleotide sequences of the organisms homologous to members of the orders Methanococcales, Methanosarcinales, and Thermoplasmatales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lein, A.Yu. and Ivanov, M.V., Biogeokhimicheskii tsikl metana v okeane (Biogeochemical Cycle of Methane in the Ocean), Moscow: Nauka, 2009.

    Google Scholar 

  2. Floodgate, L.G. and Judd, A.G., The origins of shallow gas, Cont. Shelf Res., 1992, vol. 12, pp. 1145–1156.

    Article  Google Scholar 

  3. Whiticar, M.J., Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane, Chem. Geol., 1999, vol. 161, pp. 291–314.

    Article  CAS  Google Scholar 

  4. Fukuda, H., Ogawa, T., and Tranase, S., Ethylene production by microorganisms, Adv. Microb. Physiol., 1993, vol. 35, pp. 275–306.

    Article  CAS  PubMed  Google Scholar 

  5. Milkov, A.V., Molecular and stable isotope compositions of natural gas hydrates: a revised global dataset and basic interpretations in the context of geological settings, Org. Geochem., 2005, vol. 36 P, pp. 681–702.

    Article  CAS  Google Scholar 

  6. Davis, J.B. and Squires R.M., Detection of microbially produced gaseous hydrocarbons other than methane, Science, 1954, vol. 119, pp. 381–382.

    Article  CAS  PubMed  Google Scholar 

  7. Oremland, R.S., Microbial formation of ethane in anoxic estuarine sediments, Appl. Environ. Microbiol., 1981, vol. 42, no. 1, pp. 122–129.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Oremland, R.S., Whiticar, M.J., Strohmaier, F.E., and Kiene, R.P., Bacterial ethane formation from reduced, ethylated sulfur compounds in anoxic sediments, Geochim. Cosmochim. Acta, 1988, vol. 52, pp. 1895–1904.

    Article  CAS  Google Scholar 

  9. Claypool, G.E., Natural gas formation and occurrence, AAPG Hedberg Conf. Abstr., 1999, pp. 27–29.

    Google Scholar 

  10. Hinrichs, K.-U., Hayes, J.M., Bach, W., Spivack, A.J., Hmelo, L.R., Holm, N.G., Johnson, C.G., and Sylva, S.P., Biological formation of ethane and propane in the deep marine subsurface, Proc. Nat. Acad. Sci. U. S. A., 2006, vol. 103, no. 40, pp. 14684–14689.

    Article  CAS  Google Scholar 

  11. Kuz’min, M.I., Karabanov, E.B., Kawai, T., Williams, D., Bychinskii, V.A., Kerber, E.V., Kravchinskii, V.A., Bezrukova, E.V., Prokopenko, A.A., Geletii, V.F., Kalmychkov, G.V., Goreglyad, A.V., Antipin, V.S., Khomutova, M.Yu., Soshina, N.M., Ivanov, E.V., Khursevich, G.K., Tkachenko, L.L., Solotchina, E.P., Ioshida, N., and Gvozdkov, A.N., Deep drilling on Lake Baikal: main results, Russ. Geol. Geophys., 2001, nos. 1–2, pp. 8–34.

    Google Scholar 

  12. Kalmychkov, G.V., Egorov, A.V., Kuz’min, M.I., and Khlystov, O.M., Genetic types of methane from Lake Baikal, Doklady Earth Sci., 2006, vol. 411, pp. 1462–1465.

    Article  Google Scholar 

  13. Hachikubo, A., Khlystov, O., Krylov, A., Sakagami, H., Minami, H., Nunokawa, Y., Yamashita, S., Takahashi, N., Shoji, H., Nishio, S., Kida, M., Ebinuma, T., Kalmychkov, G., and Poort, J., Molecular and isotopic characteristics of gas hydrate-bound hydrocarbons in southern and central Lake Baikal, Geo-Mar. Lett., 2010, vol. 30, nos. 3–4, pp. 321–329.

    Article  CAS  Google Scholar 

  14. Manakov, A.Yu., Khlystov, O.M., Khachikubo, A., and Ogienko, A.G., A physicochemical model for the formation of gas hydrates of different structural types in K-2 mud volcano (Kukui Canyon, Lake Baikal), Russ. Geol. Geophys., 2013, vol. 54, no. 4, pp. 475–482.

    Article  Google Scholar 

  15. Pimenov, N.V., Zakharova, E.E., Bryukhanov, A.L., Korneeva, V.A., Kuznetsov, B.B., Tourova, T.P., Pogodaevs, T.V., Kalmychkov, G.V., and Zemskaya, T.I., Activity and structure of the sulfate-reducing bacterial community in the sediments of the southern part of Lake Baikal, Microbiology (Moscow), 2013, vol. 83, nos. 1–2, pp. 47–55.

    Google Scholar 

  16. Bol’shakov, A.M. and Egorov, A.V., Application of phase equilibrium degassing for gasometric research in water areas, Okeanologiya, 1987, vol. 37, no. 5, pp. 861.

    Google Scholar 

  17. Pogodaeva, T.V., Zemskaya, T.I., Golobokova, L.P., Khlystov, O.M., Minami, H., and Sakagami, H., Chemical composition of pore waters of bottom sediments in different Baikal basins, Russ. Geol. Geophys., 2007, vol. 48, pp. 886–900.

    Article  Google Scholar 

  18. Kuznetsov, S.I. and Dubinina, G.A., Metody izucheniya vodnykh mikroorganizmov (Methods for Investigation of Aquatic Microorganisms), Moscow: Nauka, 1989.

    Google Scholar 

  19. Hungate, R.E., A roll tube method for the cultiation of strict anaerobes, in Methods in Microbiology, Norris, J.L. and Ribbons, D.W., Eds., New York: Academic, 1969, vol. 3b, pp. 117–132.

    Google Scholar 

  20. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning. A Laboratory Manual, New York: Cold Spring Harbor, 1989.

    Google Scholar 

  21. Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser., 1999, vol. 41, pp. 95–98.

    CAS  Google Scholar 

  22. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011, vol. 28, pp. 2731–2739.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Reysenbach, A.-L., Class I. Thermoprotei class. nov., in Bergey’s Manual of Systematic Bacteriology, Boone, D.R. and Castenholz, R.W., Eds., New York: Springer, 2001, vol. 1, pp. 169–210.

    Google Scholar 

  24. Reysenbach, A.-L., Order I. Thermoplasmatales ord. nov., in Bergey’s Manual of Systematic Bacteriology, Boone, D.R. and Castenholz, R.W., Eds., New York: Springer, 2001, vol. 1, p. 335–340.

    Google Scholar 

  25. Kadnikov, V.V., Mardanov, A., Beletsky, A.V., Shubenkova, O.V., Pogodaeva, T.N., Zemskaya, T.I., Ravin, N.V., and Skryabin, K.G., Microbial community structure in methane hydrate-bearing sediments of freshwater Lake Baikal, FEMS Microbiol. Ecol., 2012, vol. 79, no. 1, pp. 348–358.

    Article  CAS  PubMed  Google Scholar 

  26. Patel, G.B. and Sprott, G.D., Methanosaeta concilii gen. nov., sp. nov. (“Methanothrix oncilii”) and Methanosaeta thermoacetophila nom. rev., comb. nov., Int. J. Syst. Bacteriol., 1999, vol. 40, pp. 79–82.

    Article  Google Scholar 

  27. Namsaraev, B.B. and Zemskaya, T.I., Mikrobiologicheskie protsessy krugovorota ugleroda v donnykh osadkakh ozera Baikal (Microbiological Processes of the Carbon Cycle in Lake Baikal Bottom Sediments), Novosibirsk: Izd-vo SO RAN, 2000.

    Google Scholar 

  28. Xie, S., Lazar, C.S., Lin, Y.-S., Teske, A., and Hinrichs, K.-U., Ethaneand propane-producing potential and molecular characterization of an ethanogenic enrichment in an anoxic estuarine sediment, Org. Geochem., 2013, vol. 59, pp. 37–48.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Pavlova.

Additional information

Original Russian Text © O.N. Pavlova, S.V. Bukin, A.V. Lomakina, G.V. Kalmychkov, V.G. Ivanov, I.V. Morozov, T.V. Pogodaeva, N.V. Pimenov, T.I. Zemskaya, 2014, published in Mikrobiologiya, 2014, Vol. 83, No. 6, pp. 694–702.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlova, O.N., Bukin, S.V., Lomakina, A.V. et al. Production of gaseous hydrocarbons by microbial communities of Lake Baikal bottom sediments. Microbiology 83, 798–804 (2014). https://doi.org/10.1134/S0026261714060137

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261714060137

Keywords

Navigation