Skip to main content
Log in

Analysis of bacterial communities of two Lake Baikal endemic sponge species

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Bacterial diversity of two Lake Baikal endemic sponges characterized by different life forms, branching Lubomirskia baicalensis and encrusting Baikalospongia sp., was studied using 454 pyrosequencing of the 16S rRNA gene fragments. In the communities associated with L. baicalensis and Baikalospongia sp., 426 and 428 OTUs, respectively, were identified. In microbial associations of these sponges, 24 bacterial phyla with predominance of Bacteroidetes, Proteobacteria, and Actinobacteria were identified. Analysis of the taxonomic composition of bacterial communities of the sponges was carried out by searching the dominant phylotypes within the clusters of phylum level. Comparison of bacterial associations of the sponges with Lake Baikal bacterioplankton revealed both the shared OTUs and the unique ones characteristic of the studied species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taylor, M.W., Radax, R., Steger, D., and Wagner, M., Sponge-associated microorganisms: evolution, ecology, and biotechnological potential, Microbiol. Mol. Biol. Rev., 2007, vol. 71, pp. 295–347.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Mohamed, N.M., Rao, V., Hamann, M.T., Kelly, M., and Hill, R.T., Monitoring bacterial diversity of the marine sponge Ircinia strobilina upon transfer into aquaculture, Appl. Environ. Microbiol., 2008, vol. 74, pp. 4133–4143.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Thomas, T.R., Kavlekar, D.P., and LokaBharathi, P.A., Marine drugs from sponge-microbe association—a review, Mar. Drugs, 2010, vol. 8, pp. 1417–1468.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Henstchel, U., Piel, J., Degnan, S.M., and Taylor, M.W., Genomic insights into the marine sponge microbiome, Nat. Rev. Microbiol., 2012, vol. 10, pp. 641–654.

    Article  Google Scholar 

  5. Manconi, R. and Pronzato, R., Suborder Spongillina subord. nov.: freshwater sponges, in Systema Porifera: A Guide to the Classification of Sponges, Hooper, N.J. and van Soest, R.W., Eds., NewYork: Kluwer Academic/Plenum, 2002, pp. 921–1019.

    Chapter  Google Scholar 

  6. Lee, O.O., Wang, Y., Yang, J., Lafi, F.F., Al-Suwailem, A., and Qian, P.-Y., Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea, ISME J., 2011, vol. 5, pp. 650–664.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Parfenova, V.V., Terkina, I.L., Kostornova, T.Ya., Nikulina, I.G., Chernykh, V.I., and Maksimova, E.A., Microbial community of freshwater sponges in Lake Baikal, Biol. Bull., 2008, vol. 35, no. 4, pp. 374–379.

    Article  Google Scholar 

  8. Kalyuzhnaya, O.V., Krivich, A.A., and Itskovich, V.B., Diversity of 16S rRNA genes in metagenomic community of the freshwater sponge Lubomirskia baicalensis, Russ. J. Genet., 2012, vol. 48, no. 8, pp. 855–858.

    Article  Google Scholar 

  9. Gernert, C., Glockner, F.O., Krohne, G., and Hentschel, U., Microbial diversity of the freshwater sponge Spongilla lacustris, Microb. Ecol., 2005, vol. 50, pp. 206–212.

    Article  CAS  PubMed  Google Scholar 

  10. Costa, R., Keller-Costa, T., Newton, C.M., Gomes, N.T., da Rocha, U.N., van Overbeek, L., and van Elsas, J.D., Evidence for selective bacterial community structuring in the freshwater sponge Ephydatia fluviatilis, Microb. Ecol., 2013, vol. 65, no. 1, pp. 232–244.

    Article  PubMed  Google Scholar 

  11. Parfenova, V.V., Gladkikh, A.S., and Belykh, O.I., Comparative analysis of biodiversity in the planktonic and biofilm bacterial communities in Lake Baikal, Microbiology (Moscow), 2013, vol. 82, no. 1, pp. 91–101.

    Article  CAS  Google Scholar 

  12. Chun, J., Kim, K.Y., Lee, J.H., and Choi, Y., The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX Titanium pyrosequencer, BMC Microbiol., 2010, 10:101. doi: 10.1186/1471-2180-10-101

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., Won, S., and Chun, J., Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species, Int. J. Syst. Evol. Microbiol., 2012, vol. 62, pp. 716–721.

    Article  CAS  PubMed  Google Scholar 

  14. Jackson, S.A., Kennedy, J., Morrissey, J.P., O’Gara, F., and Dobson, A.D., Pyrosequencing reveals diverse and distinct sponge-specific microbial communities in sponges from a single geographical location in Irish waters, Microb. Ecol., 2012, vol. 64, no. 1, pp. 105–116.

    Article  PubMed  Google Scholar 

  15. White, J.R., Patel, J., Ottesen, A., Arce, G., Blackwelder, P., and Lopez, J.V., Pyrosequencing of bacterial symbionts within Axinella corrugate sponges: diversity and seasonal variability, PLoS One, 7(6): e38204. doi: 10.1371/journal.pone.0038204

  16. Ehrlich, H., Maldonado, M., Spindler, K.-D., Eckert, C., Hanke, T., Born, R., Goebel, C., Simon, P., Heinemann, S., and Worch, H., First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (Demospongia: Porifera), J. Exp. Zool. (Mol. Dev. Evol.), 2007, vol. 308B, pp. 347–356.

    Article  CAS  Google Scholar 

  17. Newton, R.J., Jones, S.E., Eiler, A., McMahon, K.D., and Bertilsson, S., A guide to the natural history of freshwater lake bacteria, Microbiol. Mol. Biol., 2011, vol. 75, no. 1, pp. 14–49.

    Article  CAS  Google Scholar 

  18. Nikitin, D.I., Strömp, C., Oranskaya, M.S., and Abraham, W.-R., Phylogeny of the ring-forming bacterium Arcicella aquatica gen. nov., sp. nov. (ex Nikitin et al. 1994), from a freshwater neuston biofilm, Int. J. Syst. Evol. Microbiol., 2004, vol. 54, pp. 681–684.

    Article  CAS  PubMed  Google Scholar 

  19. Bel’kova, N.L., Parfenova, V.V., Kostornova, T.Ya., Denisova, L.Ya., and Zaichikov, E.F., Microbial biodiversity in the water of Lake Baikal, Microbiology (Moscow), 2003, vol. 72, no. 2, pp. 203–212.

    Article  Google Scholar 

  20. Parfenova, V.V., Mal’nik, V.V., Boiko, S.M., Sheveleva, N.G., Logacheva, N.F., Evstigneeva, T.D., Suturin, A.N., and Timoshkin, O.A., Communities of hydrobionts developing at the water-rock interface in Lake Baikal, Russ. J. Ecol., 2008, vol. 39, no. 3, pp. 198–204.

    Article  Google Scholar 

  21. Zwart, G., Crump, B., Agterveld, M., Hagen, F., and Han, S., Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers, Aquat. Microb. Ecol., 2002, vol. 28, pp. 141–155.

    Article  Google Scholar 

  22. Bauer, M., Kube, M., Teeling, H., Richter, M., Lombardot, T., Allers, E., Würdemann, C.A., Quast, C., Kuhl, H., Knaust, F., Woebken, D., Bischof, K., Mussmann, M., Choudhuri, J.V., Meyer, F., Reinhardt, R., Amann, R.I., and Glöckner, F.O., Whole genome analysis of the marine Bacteroidetes ‘Gramella forsetii’ reveals adaptations to degradation of polymeric organic matter, Environ. Microbiol., 2006, vol. 8, pp. 2201–2213.

    Article  CAS  PubMed  Google Scholar 

  23. Berg, K.A., Lyra, C., Sivonen, K., Paulin, L., Suomalainen, S., Tuomi, P., and Rapala, J., High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms, ISME J., 2009, vol. 3, pp. 314–325.

    Article  CAS  PubMed  Google Scholar 

  24. Gleische, C., Fesefeldt, A., and Hirsch, P., Genus I. Hyphomicroblum Stutzer and Hartleb, 1898, in Bergey’s Manual of Systematic Bacteriology, Garrity, G.M., Ed., 2005, vol. 2, pp. 476–494.

    Article  Google Scholar 

  25. Jezbera, J., Sharma, K.A., Brandt, U., Doolittle, W.F., and Hahn, M.W., Candidatus ‘Planktophila limnetica,’ an actinobacterium representing one of the most numerically important taxa in freshwater bacterioplankton, Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 2864–2869.

    Article  CAS  PubMed  Google Scholar 

  26. Fuerst, J.A. and Sagulenko, E., Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function, Nat. Rev. Microbiol., 2011, vol. 9, no. 6, pp. 403–413.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, H., Xu, Y., Ding, Y., Yang, Q., Ren, S., Li, X., Chen, X., Xu, Y., and Hao, H., Molecular diversity analysis of planctomycete-like bacteria in inosine fermentation and municipal wastewater treatment systems, Afr. J. Microbiol. Res., 2012, vol. 6, no. 37, pp. 6635–6641.

    Article  CAS  Google Scholar 

  28. Lage, O.M., Bondoso, J., and Viana, F., Isolation and characterization of Planctomycetes from the sediments of a fish farm wastewater treatment tank, Arch. Microbiol., 2012, vol. 194, pp. 879–885.

    Article  CAS  PubMed  Google Scholar 

  29. Woebken, D., Teeling, H., Wecker, P., Dumitriu, A., Kostadinov, I., Delong, E.F., Amann, R., and Glöckner, F.O., Fosmids of novel marine Planctomycetes from the Namibian and Oregon coast upwelling systems and their cross-comparison with planctomycete genomes, ISME J., 2007, vol. 1, pp. 419–435.

    Article  CAS  PubMed  Google Scholar 

  30. Kulichevskaya, I.S., Ivanova, A.O., Belova, S.E., Baulina, O.I., Bodelier, P.L., Rijpstra, W.I., Sinninghe Damsté, J.S., Zavarzin, G.A., and Dedysh, S.N., Schlesneria paludicola gen. nov., sp. nov., the first acidophilic member of the order Planctomycetales, from Sphagnum-dominated boreal wetlands, Int. J. Syst. Evol. Microbiol., 2007, vol. 57, pp. 2680–2687.

    Article  CAS  PubMed  Google Scholar 

  31. Schmid, M., Schmitz-Esser, S., Jetten, M., and Wagner, M., 16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection, Environ. Microbiol., 2001, vol. 3, no. 7, pp. 450–459.

    Article  CAS  PubMed  Google Scholar 

  32. Mohamed, N.M., Saito, K., Tal, Y., and Hill, R.T., Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges, ISME J., 2010, vol. 4, no. 1, pp. 38–48.

    Article  CAS  PubMed  Google Scholar 

  33. Elshahed, M.S., Najar, F.Z., Aycock, M., Qu, C., Roe, B.A., and Krumholz, L.R., Metagenomic analysis of the microbial community at Zodletone spring (Oklahoma): insights into the genome of a member of the novel candidate division OD1, Appl. Environ. Microbiol., 2005, vol. 71, no. 11, pp. 7598–7602.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Wrighton, K.C., Thomas, B.C., Sharon, I., Miller, C.S., Castelle, C.J., VerBerkmoes, N.C., Wilkins, M.J., Hettich, R.L., Lipton, M.S., Williams, K.H., Long, P.E., and Banfield, J.F., Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla, Science, 2012, vol. 337, no. 6102, pp. 1661–1665.

    CAS  Google Scholar 

  35. Peura, S., Eiler, A., Bertilsson, S., Nykänen, H., Tiirola, M., and Jones, R.I., Distinct and diverse anaerobic bacterial communities in boreal lakes dominated by candidate division OD1, ISME J, 2012, vol. 6, pp. 1640–1652.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Schmitt, S., Deines, P., Behnam, F., Wagner, M., and Taylor, M.W., Chloroflexi bacteria are more diverse, abundant, and similar in high than in low microbial abundance sponges, FEMS Microbiol. Ecol., 2011, vol. 78, pp. 497–510.

    Article  CAS  PubMed  Google Scholar 

  37. Philips, S., Laanbroek, H.J., and Verstraete, W., Origin, causes, and effects of increased nitrite concentrations in aquatic environments, Rev. Environ. Sci. Biotechnol., 2002, vol. 1, pp. 115–141.

    Article  CAS  Google Scholar 

  38. van der Gucht, K., Vandekerckhove, T., Vloemans, N., Cousin, S., Muylaert, K., Sabbe, K., Gillis, M., Declerk, S., De Meester, L., and Vyverman, W., Characterization of bacterial communities in four freshwater lakes differing in nutrient load and food web structure, FEMS Microbiol. Ecol., 2005, vol. 53, no. 2, pp. 205–220.

    Article  PubMed  Google Scholar 

  39. Liu, Y., Yao, T., Jiao, N., Kang, S., Zeng, Y., and Huang, S., Microbial community structure in moraine lakes and glacial meltwaters, Mount Everest, FEMS Microbiol. Lett., 2006, vol. 265, no. 1, pp. 98–105.

    Article  CAS  PubMed  Google Scholar 

  40. Bultel-Poncé, V., Berge, J.P., Debitus, C., Nicolas, J.L., and Guyot, M., Metabolites from the sponge-associated bacterium Pseudomonas species, Mar. Biotechnol., 1999, vol. 1, pp. 384–390.

    Article  PubMed  Google Scholar 

  41. Lee, Y.K., Lee, J.-H., and Lee, H.K., Microbial symbiosis in marine sponges, J. Microbiol., 2001, vol. 39, no. 4, pp. 254–264.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Gladkikh.

Additional information

Original Russian Text © A.S. Gladkikh, Ok.V. Kalyuzhnaya, O.I. Belykh, T.S. Ahn, V.V. Parfenova, 2014, published in Mikrobiologiya, 2014, Vol. 83, No. 6, pp. 682–693.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gladkikh, A.S., Kalyuzhnaya, O.V., Belykh, O.I. et al. Analysis of bacterial communities of two Lake Baikal endemic sponge species. Microbiology 83, 787–797 (2014). https://doi.org/10.1134/S002626171406006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002626171406006X

Keywords

Navigation