Skip to main content
Log in

Effect of alkylresorcinols on thermal denaturation and refolding of bacterial luciferase and synthesis of heat shock proteins revealed in the luminescent molecular and cellular test systems

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Molecular and cellular luminescent biotests were used to reveal the effects of five alkylresorcinol homologues (C7-, C9-, C11-, C12-, and C18-AR) on the thermally-induced denaturation and refolding of bacterial luciferases, as well as on the synthesis of heat shock proteins. The ARs activities were found to depend on their fine structure and concentration. The direct heat-protective effect of short-chain C7- and C9-AR on the chromatographically pure Photobactrium leiognathii luciferase/oxidoreductase was shown within a broad range of concentrations (10−3–10−3 M). The long-chain ARs homologues exhibited a similar heat-protective effect at micromolar concentrations only, while their millimolar concentrations increased the sensitivity of the model proteins to thermal treatment. The recombinant strain Escherichia coli K12 MG1655, bearing constitutively expressed Vibrio fischeri luxAB genes was used to investigate the ARs effect on the intracellular chaperone-independent refolding of bacterial luciferase. The functional activity of heat-inactivated enzyme was restored by micromolar concentrations of short-chain ARs, while long-chain homologues inhibited refolding over the wide concentration range. The recombinant luminescent E. coli strain bearing the inducible ibpA’::luxCDABE genetic construction was used to determine the effect of ARs on the synthesis of heat shock proteins (HSP). The preincubation mode of bacterial cells with long-chain alkylresorcinols led to the dose-dependent stimulation of HSP synthesis (2.7 to 4 times), which confirmed that ARs function as “alarmones.” Subsequent thermal treatment resulted in a 5- to 15-fold decrease of the following HSP induction compared to the control, while the number of viable cells opposite increased by 1.5- to 4-fold. Thus, pretreatment of the bacterial cells with long-chain ARs resulted in their preadaptation to subsequent thermally induced stress. Short-chain ARs caused less pronounced HSP suppression, although this was still was accompanied by increased heat resistance of the AR-pretreated bacterial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ratkowsky, D.A., Olley, J., and Ross, T.J., Unifying temperature effects on the growth rate of bacteria and the stability of globular proteins, Theor. Biol., 2005, vol. 233, pp. 351–362.

    Article  CAS  Google Scholar 

  2. Basnak’yan, I.A., Stress u bakterii (Stress in Bacteria), Moscow: Meditsina, 2003.

    Google Scholar 

  3. Tkachenko, A.G., Molekulyarnye mekhanizmy stressornykh otvetov u mikroorganizmov (Molecular Mechanisms of Stress Responses in Microorganisms), Yekaterinburg: UrO RAN, 2012.

    Google Scholar 

  4. Lund, P.A., Microbial molecular chaperones, Adv. Microb. Physiol., 2001, vol. 44, pp. 93–140.

    Article  CAS  PubMed  Google Scholar 

  5. Feder, M.E. and Hofmann, G.E., Heat-shock proteins, molecular chaperones, and the stress response, Annu. Rev. Physiol., 1999, vol. 61, pp. 243–282.

    Article  CAS  PubMed  Google Scholar 

  6. Ratajczak, E., Stryiecka, J., Matuszewska, M., Zietkiewicz, S., Kuczyńska-Wiśnik, D., Laskowska, E., and Liberek, K.. IbpA the small heat shock protein from Escherichia coli forms fibrils in the absence of its cochaperone IbpB, FEBS Lett., 2010, vol. 584, no. 11, pp. 2253–2257.

    Article  CAS  PubMed  Google Scholar 

  7. Kolpakov, A.I., Il’inskaya, O.N., Bespalov, M.M., Kupriyanova-Ashina, F.G., Gal’chenko, V.F., Kurganov, B.I., and El’-Registan, G.I., Stabilization of enzymes by anabiosis autoinducers as a possible mechanism of resistance of resting microbial forms, Microbiology (Moscow), 2000, vol. 69, no. 2, pp. 180–185.

    Article  CAS  Google Scholar 

  8. Nikolaev, Y.A., Borzenkov, I.A., Tarasov, A.L., Loiko, N.G., Kozlova, A.N., Gal’chenko, V.F., and El’-Registan, G.I., Role of alkylhydroxybenzenes in bacterial adaptation to unfavorable growth conditions, Microbiology (Moscow), 2010, vol. 79, no. 6, pp. 747–752.

    Article  CAS  Google Scholar 

  9. Nikolaev, Yu.A., Loiko, N.G., Stepanenko, I.Yu., Shanenko, E.F., Martirosova, E.I., Plakunov, V.K., Kozlova, A.N., Borzenkov, I.A., Krupyanskii, Yu.F., El’-Registan, G.I., Korotina, O.A., and Rodin, D.S., Changes in physicochemical properties of proteins, caused by modification with alkylhydroxybenzenes, Appl. Biochem. Microbiol., 2008, vol. 44, no. 2, pp. 143–150

    Article  CAS  Google Scholar 

  10. Golod, N.A., Loiko, N.G., Gal’chenko, V.F., Nikolaev, Y.A., El’-Registan, G.I., Lobanov, K.V., Mironov, A.S., and Voieikova, T.A., Involvement of alkylhydroxybenzenes, microbial autoregulators, in controlling the expression of stress regulons, Microbiology (Moscow), 2009, vol. 78, no. 6, pp. 678–688.

    Article  CAS  Google Scholar 

  11. Deryabin, D.G., Bakterial’naya biolyuminestsentsiya. Fundamental’nye i prikladnye aspekty (Bacterial Bioluminescence. Basic and Applied Aspects), Moscow: Nauka, 2009.

    Google Scholar 

  12. Manukhov, I.V., Structure of the lux operons and quorum sensing-type mechanisms in marine bacteria, Extended Abstract of Doctoral (Biol.) Dissertation, Moscow, GosNIIgenetika, 2011.

    Google Scholar 

  13. Deryabin, D.G., Davydova, O.K., Gryazeva, I.V., and El’-Registan, G.I., Involvement of alkylhydroxybenzenes in the Escherichia coli response to the lethal effect of UV irradiation, Microbiology (Moscow), 2012, vol. 81, no. 2, pp. 168–177.

    Article  CAS  Google Scholar 

  14. Kuznetsov, A.M., Tyul’kova, N.A., Kratasyuk, V.A., Abakumova, V.V., and Rodicheva, E.K., Investigation of characteristics of reagents for bioluminescence biotests, Sibir. Ekol. Zh., 1997, no. 5, pp. 459–465.

    Google Scholar 

  15. Manukhov, I.V., Eroshnikov, G.E., Vyssokikh, M.Yu., and Zavilgelsky, G.B., Folding and refolding of thermolabile and thermostable luciferases: the role of DnaKJ heat-shock proteins, FEBS Lett., 1999, vol. 448, nos. 2–3, pp. 265–268.

    Article  CAS  PubMed  Google Scholar 

  16. Kotova, V.Yu., Manukhov, I.V., and Zavil’gel’skii, G.B., Lux-biosensors for detection of SOS-response, heat shock, and oxidative stress, Appl. Biochem. Microbiol., 2010, vol. 46, no. 8, pp. 781–788.

    Article  CAS  Google Scholar 

  17. Martirosova, E.I., Karpekina, T.A., and El’-Registan, G.I., Enzyme modification by natural chemical chaperones of microorganisms, Microbiology (Moscow), 2004, vol. 73, no. 5, pp. 708–715.

    Article  CAS  PubMed  Google Scholar 

  18. Krupyanskii, Y.F., Knox, P.P., Loiko, N.G., Abdulnasirov, E.G., Korotina, O.A., Stepanov, S.A., Zakharova, N.I., Rubin, A.B., Nikolaev, Y.A., and El’-Registan, G.I., Influence of chemical chaperones on the properties of lysozyme and the reaction center protein from Rhodobacter sphaeroides, Biophysics, 2011, vol. 56, no. 1, pp. 8–23.

    Article  Google Scholar 

  19. Korotina, O.A. and Krupyanskii, Yu.F., Changes in the structure, dynamics, and functional activity of enzymes interacting with chemical chaperones, Nauch. Sess. MIFI, 2008, vol. 3, pp. 128–129.

    Google Scholar 

  20. Martirosova, E.I., Nikolaev, Yu.A., Krylov, I.A., Shanenko, E.F., Krupyanskii, Yu.F., Loiko, N.G., and El’-Registan, G.I., Application of alkylhydroxybenzenes for enhancement of enzyme activity and stability, Khim. Tekhnol., 2007, no. 6, pp. 250–256.

    Google Scholar 

  21. Stepanenko, I.Yu., Mulyukin, A.L., Kozlova, A.N., Nikolaev, Yu.A., and El’-Registan, G.I., The role of alkylhydroxybenzenes in the adaptation of Micrococcus luteus to heat shock, Microbiology (Moscow), 2005, vol. 74, no. 1, pp. 20–26.

    Article  CAS  Google Scholar 

  22. El-Registan, G.I., Mulyukin, A.L., Nikolaev, Y.A., Stepanenko, I.Y., Kozlova, A.N., Martirosova, E.I., Shanenko, E.F., Strakhovskaya, M.G., and Revina, A.A., The role of microbial low-molecularweight autoregulatory factors (alkylhydroxybenzenes) in resistance of microorganisms to radiation and heat shock, J. Adv. Space Res., 2005, vol. 36, no. 9, pp. 1718–1728.

    Article  CAS  Google Scholar 

  23. Konanykhina, I.A., Shanenko, E.F., Loiko, N.G., Nikolaev, Yu.A., and El’-Registan, G.I., Regylatiry effect of microbial alkyloxybenzenes of different structure on the stress response of yeast, Appl. Biochem. Microbiol., 2008, vol. 44, no. 5, pp. 518–522.

    Article  CAS  Google Scholar 

  24. Petrovskii, A.S., Loiko, N.G., Nikolaev, Yu.A., Kozlova, A.N., El’-Registan, G.I., Deryabin, D.G., Mikhailenko, N.A., Kobzeva, T.G., Kanaev, P.A., and Krupyanskii, Yu.F., Regulation of the functional activity of lysozyme by alkyloxybenzenes, Microbiology (Moscow), 2009, vol. 78, no. 2, pp. 144–153.

    Article  CAS  Google Scholar 

  25. El’-Registan, G.I., Mulyukin, A.L., Nikolaev, Yu.A., Gal’chenko, V.F., Suzina, N.E., and Duda, V.I., Adaptogenic functions of extracellular autoregulators of microorganisms, Microbiology (Moscow), 2006, vol. 75, no. 4, pp. 380–389.

    Article  Google Scholar 

  26. Stasiuk, M. and Kozubek, A., Biological activity of phenolic lipids, Cell. Mol. Life Sci., 2010, vol. 67, pp. 841–860.

    Article  CAS  PubMed  Google Scholar 

  27. Mulyukin, A.L., Soina, V.S., Demkina, E.V., Kozlova, A.N., Suzina, N.E., Dmitriev, V.V., Duda, V.I., and El-Registan, G.I., Formation of resting cell by non-spore-forming microorganisms as a strategy of long-term survival in the environment, Proc. SPIE, 2003, vol. 4939, pp. 208–218.

    Article  CAS  Google Scholar 

  28. Deryabin, D.G., Sviridova, T.G., El’-Registan, G.I., and Chereshnev, V.A., Impact of bacterial autoregulatory molecules (homoserine lactones and alkylhydroxybenzenes) on the oxidative metabolism of the cell effectors of natural immunity, Microbiology (Moscow), 2013, vol. 82, no. 2, pp. 133–141.

    Article  CAS  Google Scholar 

  29. Kipenskaya, L.V., Kupriyanova-Ashina, F.G., Il’inskaya, O.N., Kolpakov, A.I., and Leshchinskaya, I.B., Effect of Bacillus intermedius ribonucleases with different catalytic activities on the growth of Escherichia coli and Bacillus subtilis, Microbiology (Moscow), 1998, vol. 67, no. 2, pp. 133–136.

    CAS  Google Scholar 

  30. Krupyanskii, Yu.F., Abdulnasyrov, E.G., Loiko, N.G., Stepanov, A.S., Tereshkina, K.B., and El’-Registan, G.I., Possible mechanisms of the effect of hexylresorcinol on the structural, dynamic, and functional properties of lysozyme protein, Khim. Fiz., 2012, vol. 31, no. 63, p. 60.

    CAS  Google Scholar 

  31. Deryabin, D.G., Romanenko, N.A., Sviridova, T.G., and El’-Registan, G.I., Alkylhydroxybenzenes affect the functional stability of antibodies in aqueous solutions, Vopr. Eksp. Biol. Med., 2012, no. 2, pp. 38–43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Deryabin.

Additional information

Original Russian Text © D.G. Deryabin, I.V. Gryazeva, O.K. Davydova, G.I. El’-Registan, 2014, published in Mikrobiologiya, 2014, Vol. 83, No. 6, pp. 640–652.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deryabin, D.G., Gryazeva, I.V., Davydova, O.K. et al. Effect of alkylresorcinols on thermal denaturation and refolding of bacterial luciferase and synthesis of heat shock proteins revealed in the luminescent molecular and cellular test systems. Microbiology 83, 740–750 (2014). https://doi.org/10.1134/S0026261714060046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261714060046

Keywords

Navigation