Skip to main content

Assessment of toxicity of volatile fatty acids to Photobacterium phosphoreum

Abstract

The toxicity of four volatile fatty acids (VFAs) as anaerobic digestion (AD) intermediates was investigated at pH 7. Photobacterium phosphoreum T3 was used as an indicator organism. Binary, ternary and mixtures of AD intermediates were designated by letters A (acetic acid + propionic acid), B (acetic acid + butyric acid), C (acetic acid + ethanol), D (propionic acid + butyric acid), E (propionic acid + ethanol), F (butyric acid + ethanol), G (acetic acid + propionic acid + butyric acid), H (acetic acid + propionic acid + ethanol), I (acetic acid + butyric acid+ ethanol), J (propionic acid + butyric acid + ethanol) and K (acetic acid + propionic acid + butyric acid + ethanol) to assess the toxicity through equitoxic mixing ratio method. The IC50 values of acetic acid, propionic acid, butyric acid and ethanol were 9.812, 7.76, 6.717 and 17.33 g/L respectively, displaying toxicity order of: butyric acid > propionic acid > acetic acid > ethanol being additive in nature. The toxic effects of four VFAs could be designated as synergistic and one additive in nature.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Tang, C.J., Zheng, P., Jin, R.C., Hu, B.L., Yu, Y., Chen, J.W., and Huang, W., Inhibition of anaerobic digestion of swine wastewater caused by free ammonia nitrogen and its control strategies, J. Chem. Eng. Chin. Univ., 2008, vol. 22, pp. 697–702.

    CAS  Google Scholar 

  2. 2.

    Cavinato, C., Fatone, F., Bolzonella, D., and Pavan, P., Thermophilic anaerobic codigestion of cattle manure with agro-wastes and energy crops: comparison of pilot and full scale experiences, Bioresour. Technol., 2010, vol. 101, pp. 545–550.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Rodirguez, D.C., Belmonte, M., Penuela, G., Campos, J.L., and Vidal, G., Behaviour of molecular weight distribution for the liquid fraction of pig slurry treated by anaerobic digestion, Environ. Technol., 2011, vol. 32, pp. 419–425.

    Article  Google Scholar 

  4. 4.

    Ge, H.Q., Jensen, P.D., and Batstone, D.J., Increased temperature in the thermophilic stage in temperature phased anaerobic digestion (TPAD) improves degradability of waste activated sludge, J. Hazard. Mater., 2011, vol. 187, pp. 355–361.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Mahmood, Q., Zheng, P., Li, G.X., and Mei, L.L., The rate-limiting step in anaerobic digestion in the presence of Phosphine, Toxicol. Ind. Health, 2006, vol. 22, pp. 165–172.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Ji, J.Y., Zheng, K., Xing, Y.J., and Zheng, P., Hydraulic characteristics and their effects on working performance of compartmentalized anaerobic reactor, Bioresour. Technol., 2012, 116: 47–52.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Zeb, B.S., Mahmood, Q., and Pervez, A., Characteristics and performance of anaerobic wastewater treatment (a review), J. Chem. Soc. Pak., 2013, vol. 35, pp. 217–232.

    CAS  Google Scholar 

  8. 8.

    Wong, B.T., Show, K.Y., Su, A., Wong, R., and Lee, D.J., Effect of volatile fatty acid composition on upflow anaerobic sludge blanket (UASB) performance, Energ. Fuels, 2008, vol. 22, pp. 108–112.

    Article  CAS  Google Scholar 

  9. 9.

    Lynd, L.R., Weimer, P.J., Van Zyl, W.H., and Pretorius, I.S., Microbial cellulose utilization: fundamentals and biotechnology, Microbiol. Mol. Biol. Res., 2002, vol. 66, pp. 506–577.

    Article  CAS  Google Scholar 

  10. 10.

    Puñal, A., Rodríguez, J., Franco, A., Carrasco, E.F., Roca, E., and Lema, J.M., Advanced monitoring and control of anaerobic wastewater treatment plants: Diagnosis and supervision by a fuzzy-based expert system, Water Sci. Technol., 2000, vol. 43, pp. 191–198.

    Google Scholar 

  11. 11.

    Henze, M. and Harremoes, P., Anaerobic treatment of wastewater in fixed film reactors — A literature review, Water Sci. Technol., 1983, vol. 15, pp. 1–10.

    CAS  Google Scholar 

  12. 12.

    Krakat, N., Westphal, A., Schmidt, S., and Scherer, P., Anaerobic digestion of renewable biomass: thermophilic temperature governs methanogen population dynamics, Appl. Environ. Microbiol., 2010, vol. 76, pp. 1842–1850.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  13. 13.

    Labatut, R.A. and Gooch, C.A., Undated monitoring of anaerobic digestion process to optimize performance and prevent system failure, Dept. Biol. Environ. Engin., Cornell Univ., Ithaca, NY. http://www.manuremanagement.cornell.edu/Pages/General_Docs/Events/21.Rodrigo.Labatut

  14. 14.

    Batstone, D., Keller, J., Angelidaki, R., Kalyuzhny, S., Pavlostathis, S., Rozzi, A., Sanders, W., Siegrist, H., and Vavilin, V.A., The IWA anaerobic digestion model N1 (ADM), 9th World Congress Anaerobic Digestion, Antwerpen, 2001.

    Google Scholar 

  15. 15.

    Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H., and Vavilin, V.A., The IWA anaerobic digestion model No. 1 (ADM1), microbial methane production -theoretical aspects, Water Sci. Technol., 2002, vol. 45, pp. 65–73.

    PubMed  CAS  Google Scholar 

  16. 16.

    McCarty, P.L. and Smith, D.P., Anaerobic waste-water treatment 4, Environ Sci. Technol., 1986, vol. 20, pp. 1200–1206.

    Article  CAS  Google Scholar 

  17. 17.

    Ji, J.Y., Xing, Y.J., Ma, Z.T., Zhang, M., and Zheng, P., Acute toxicity of pharmaceutical wastewaters containing antibiotics to anaerobic digestion treatment, Chem., 2013, vol. 91, pp. 1094–1098.

    Article  CAS  Google Scholar 

  18. 18.

    Huang, Z. and Wang, L.J., Physiological properties of luminescent bacteria and its application in environmental monitoring, China Environ. Sci., 1995, vol. 16, pp. 87–90.

    Google Scholar 

  19. 19.

    Ren, N.Q., Chua, H., Chan, S.Y., Tsang, Y.F., Wang, Y.J., and Sin, N., Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors, Bioresour. Technol., 2007, vol. 989, pp. 1774–1780.

    Article  Google Scholar 

  20. 20.

    Jiao, S.J., Zheng, S.R., Yin, D.Q., Wang, L.H., and Chen, L.Y., Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria, Chemosphere, 2008, vol. 73, pp. 377–382.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Ventura, S.P.M., Marques, C.S., Rosatella, A.A., Afonso, C.A.M., Goncalves, F., and Coutinho, J.A.P., Toxicity assessment of various ionic liquid families towards Vibrio fischeri marine bacteria, Ecotoxicol. Environ. Saf., 2012, vol. 76, pp. 162–168.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    International Standards Organization Water Quality-Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio fischeri (luminescent bacteria test), Geneva, Switzerland ISO 11348-2, 1994.

  23. 23.

    Zheng, P. and Feng, X.S., Biotechnology for waste treatment, Beijing: Higher Education Press, 2006.

    Google Scholar 

  24. 24.

    Blum, G.J.W. and Speece, R.E., A database of chemical toxicity to environmental bacteria and its use in interspecies comparisons and correlation, Res. J. Water Pollut. Control Fed., 1991, vol. 63, pp. 198–207.

    CAS  Google Scholar 

  25. 25.

    Stephanopoulos, G.N., Aristidou, A.A. and Nielsen, J., Metabolic Engineering: Principles and Methodologies, Waltham: Academic Press, 1998.

    Google Scholar 

  26. 26.

    Sun, C.Q., Connor, O., Turner, C.J., Lewis, S.J., Stanley, G.D., and Roberton, A.M., The effect of pH on the inhibition of bacterial growth by physiological concentrations of butyric acid: implications for neonatesfed on suckled milk, Chem.-Biol. Interact., 1998, vol. 113, pp. 117–131.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Jordening, H.J. and Mosche, M., Comparison of different models of substrate and product inhibition in anaerobic digestion, Water Res., 1999, vol. 33, pp. 2545–2554.

    Article  Google Scholar 

  28. 28.

    Wang, B., Wei, W., and Wang, J.L., Inhibitory effect of ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production, Int. J. Hyd. Energ., 2008, vol. 33, pp. 7013–7019.

    Article  CAS  Google Scholar 

  29. 29.

    Michel-Savin, D., Marchal, R., and Vandecasteele, J.P., Control of the selectivity of butyric acid production and improvement of fermentation performance with Clostridium tyrobutyricum, Appl. Microbiol. Biotechnol., 1990, vol. 32, pp. 387–392.

    Article  CAS  Google Scholar 

  30. 30.

    David, A.W. and Pamela, W., Environmental Toxicology, New York: Cambridge Univ. Press, 2002.

    Google Scholar 

  31. 31.

    Palmisano, A.C. and Barlaz, M.A., Microbiology of Solid Waste, London: CRC, 1971.

    Google Scholar 

  32. 32.

    Siegert, I. and Banks, C., The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors, Process. Biochem., 2005, vol. 40, pp. 3412–3418.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qaisar Mahmood.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zeb, B.S., Mahmood, Q., Ping, Z. et al. Assessment of toxicity of volatile fatty acids to Photobacterium phosphoreum . Microbiology 83, 510–515 (2014). https://doi.org/10.1134/S0026261714050294

Download citation

Keywords

  • anaerobic digestion
  • toxicity
  • anaerobic intermediates
  • Photobacterium phosphoreum T3
  • industrial wastewater