Skip to main content
Log in

Population structure of the clover rhizobia Rhizobium leguminosarum bv. trifolii upon transition from soil into the nodular niche

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

High-throughput sequencing of the amplicon gene library revealed variations in the population structure of clover rhizobia (Rhizobium leguminosarum bv. trifolii) upon transition from soil into the root nodules of the host plant (Trifolium hybridum). Analysis of rhizobial diversity using the nodA gene revealed 3258 and 1449 nucleotide sequences (allelic variants) for the soil and root nodule population, respectively. They were combined into 29 operational taxonomic units (OTU) according to the 97% identity level; 24 OTU were found in the soil population, 12 were present in the root nodule population, and 7 were common. The predominant OTE13 (77.4 and 91.5% of the soil and root nodule populations, respectively) contained 155 and 200 variants of the soil and root nodule populations, respectively, with the nucleotide diversity increasing significantly upon the “soil → root” transition. The “moving window” approach was used to reveal the sites of the nodA gene in which polymorphism, including that associated with increased frequency of non-synonymous substitution frequency, increased sharply upon transition from soil into root nodules. PCR analysis of the IGS genotypes of individual strains revealed insignificant changes in rhizobial diversity upon transition from soil into root nodules. These results indicate that acceleration of rhizobial evolution in the course of symbiosis may be associated with development of highly polymorphic virulent subpopulations subjected to directional selection in the “plant-soil” system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Provorov, N.A. and Vorob’ev, N.I., Geneticheskie osnovy evolyutsii rastitel’no-mikrobnogo simbioza (Genetic Foundations of the Evolution of Plant-Microbial Symbiosis), Tikhonovich, I.A., Ed., St.-Petersburg: Inform-Navigator, 2012.

  2. Andronov, E.E., Terefework, Z., Roumiantseva, M.L., Dzyubenko, N.I., Onichtchouk, O.P., Kurchak, O.N., Dresler-Nurmi, A., Young, J.P.W., Simarov, B.V., and Lindström, K., Symbiotic and genetic diversity of Rhizobium galegae isolates collected from the Galega orientalis gene center in the Caucasus, Appl. Environ. Microbiol., 2003, vol. 69, pp. 1067–1074.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Hirsch, P.R., Population dynamics of indigenous and genetically modified rhizobia in the field, New Phytol., 1996, vol. 133, pp. 159–171.

    Article  Google Scholar 

  4. Andrade, D.S., Murphy, P.J., and Giller, K.E., The diversity of Phaseolus-nodulating rhizobial populations is altered by liming of acid soils planted with Phaseolus vulgaris L. in Brazil, Appl. Environ. Microbiol., 2002, vol. 68, pp. 4025–4034.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Carelli, M., Gnocchi, S., Fancelli, S., Mengoni, A., Paffetti, D., Scotti, C., and Bazzicalupo, M., Genetic diversity and dynamics of Sinorhizobium meliloti populations nodulating different alfalfa cultivars in Italian soils, Appl. Environ. Microbiol., 2000, vol. 66, pp. 4785–4789.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Wilkinson, H.H., Spoeke, J.M., and Parker, M.A., Divergence in symbiotic compatibility in a legumeBradyrhizobium mutualism, Evolution, 1996, vol. 50, pp. 1470–1477.

    Article  Google Scholar 

  7. Kosier, B., Pühler, A., and Simon, R., Monitoring and diversity of Rhizobium meliloti field and microcosm isolates with a novel rapid genotyping method using insertion elements, Molec. Ecol., 1993, vol. 2, pp. 35–46.

    Article  CAS  Google Scholar 

  8. Minamisawa, K., Nakatsuka, Y., and Isawa, T., Diversity and field site variation of indigenous populations of soybean bradyrhizobia in Japan by fingerprints with repeated sequences RSα and Rsβ, FEMS Microbiol. Ecol., 1999, vol. 29, pp. 171–178.

    CAS  Google Scholar 

  9. Ferreira, M.C., Andrade, D.S., Chueire, L.M., Takemura, S.M., and Hungria, M., Tillage method and crop rotation effects on the population sizes and diversity of bradyrhizobia nodulating soybean, Soil Biol. Biochem., 2000, vol. 32, pp. 627–637.

    Article  CAS  Google Scholar 

  10. Krasil’nikov, N.A., Variability of root nodule bacteria, Dokl. Akad. Nauk SSSR, 1941, vol. 31, pp. 90–92.

    Google Scholar 

  11. Roumyantseva, M.L., Andronov, E.E., Sagulenko, V.V., Onishchuk, O.P., Provorov, N.A., and Simarov, B.V., Instability of cryptic plasmids in strain Sinorhizobium meliloti P108 in the course of symbiosis with alfalfa Medicago sativa, Rus. J. Genet. 2004, vol. 40, no. 4, pp. 356–362.

    Article  Google Scholar 

  12. Weaver, R.W. and Wright, S.F., Variability in effectiveness of rhizobia during culture and in nodules, Appl. Environ. Microbiol., 1987, vol. 53, pp. 2972–2974.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Broughton, W.J., Samrey, U., and Stanley, J., Ecological genetics of Rhizobium meliloti: symbiotic plasmid transfer in the Medicago sativa rhizosphere, FEMS Microbiol. Lett., 1987, vol. 40, pp. 251–255.

    Article  CAS  Google Scholar 

  14. Pretorius-Güth, I.M., Pühler, A., and Simon, R., Conjugal transfer of megaplasmid 2 between Rhizobium meliloti strains in alfalfa nodules, Appl. Environ. Microbiol., 1990, vol. 56, pp. 2354–2359.

    PubMed Central  PubMed  Google Scholar 

  15. Chernova, T.A., Aronshtam, A.A., and Simarov, B.V., Genetic nature of Rhizobiul meliloti nonvirulent mutants CXM1-125 and CXM1-126, Genetika, 1986, vol. 22, pp. 2066–2073.

    CAS  Google Scholar 

  16. Maynard Smith, J., Feil, E.J., and Smith, N.H., Population structure and evolutionary dynamics of pathogenic bacteria, BioEssays, 2000, vol. 22, pp. 1115–1122.

    Article  Google Scholar 

  17. Rumyantseva, M.L., Simarov, B.V., Onishchuk, O.P., Andronov, E.E., Chizhevskaya, E.P., Belova, V.S., Kurchak, O.N., Muntyan, A.N., Rumyantseva, T.B., and Zatovskaya, T.V., Biologicheskoe raznoobrazie kluben’kovykh bakterii v ekosistemakh i agrotsenozakh. Teoreticheskie osnovy i metody (Biodiversity of Root Nodule Bacteria in Ecosystems and Agrocenoses), St. Petersburg: VNIISKhM, 2011.

    Google Scholar 

  18. Malferrati, G., Monferinin, P., and De Blasio, P., High-quality genomic DNA from human whole blood and mononuclear cells, Bio Techniques, 2002, vol. 33, pp. 1228–1230.

    Google Scholar 

  19. Laguerre, G., Mavingui, P., Allard, M.R., Charnay, M.P., Lauvrier, P., Mazurier, S.I., Rigottier-Gois, L., and Amarger, N., Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction lengths polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars, Appl. Environ. Microbiol., 1996, vol. 62, pp. 2029–2036.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Pen~a, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., and Knight, R., QIIME allows analysis of high throughput community sequencing data, Nature Methods, 2010, vol. 7, pp. 335–336.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S., MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance and maximum parsimony method, Molec. Biol. Evol., 2011, vol. 28, pp. 2731–2739.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Rozas, J., Sánchez-Delbarrio, J.C., Messeguer, X., and Rozas, R., DnaSP, DNA polymorphism analyses by the coalescent and other methods, Bioinformatics, 2003, vol. 19, pp. 2496–2497.

    Article  CAS  PubMed  Google Scholar 

  23. Nei, M., Estimation of average heterozygosity and genetic distance from a small number of individuals, Genetics, 1978, vol. 89, pp. 583–590.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Selander, R.K., Caugant, D.A., Ochman, H., Musser, J.M., Gilmour, M.N., and Whittam, T.S., Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics, Appl. Environ. Microbiol., 1986, vol. 51, pp. 873–884.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Wittebolle, L., Marzorati, M., Clement, L., Balloi, A., Daffonchio, D., Heylen, K., De Vos, P., Verstraete, W., and Boon, N., Initial community evenness favors functionality under selective stress, Nature, 2009, vol. 458, pp. 623–626.

    Article  CAS  PubMed  Google Scholar 

  26. Tikhonovich, I.A. and Provorov, N.A., Simbiozy rastenii i mikroorganizmov: molekulyarnaya genetika agrosistem budushchego (Plant-Microbial Symbioses: Molecular Genetics of Future Agrosystems), St. Petersburg: Izd-vo SPbGU, 2009.

    Google Scholar 

  27. Hirsch, A.M., Lum, M.R., and Downie, J.A., What makes the rhizobia-legume symbiosis so special? Plant Physiol., 2001, vol. 127, pp. 1484–1492.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Provorov.

Additional information

Original Russian Text © E.E. Andronov, O.P. Onishchuk, O.N. Kurchak, N.A. Provorov, 2014, published in Mikrobiologiya, 2014, Vol. 83, No. 4, pp. 500–508.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andronov, E.E., Onishchuk, O.P., Kurchak, O.N. et al. Population structure of the clover rhizobia Rhizobium leguminosarum bv. trifolii upon transition from soil into the nodular niche. Microbiology 83, 422–429 (2014). https://doi.org/10.1134/S0026261714030035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261714030035

Keywords

Navigation