Skip to main content
Log in

Trehalose: Chemical structure, biological functions, and practical application

  • Reviews
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Up-to-date information concerning the chemical structure and properties of trehalose, its natural occurrence and biological functions in plants, fungi, and prokaryotes, as well as its practical application, mainly in medicine and biotechnology, are reviewed. A special section deals with the role of trehalose and other protective polyols in stress processes in fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wiggers, H.A.L., Untersuchung über das Mutterkorn, Secale cornutum, Ann. Pharmacie, 1832, vol. 1, no. 2, pp. 129–182.

    Article  Google Scholar 

  2. Feofilova, E.P., Trehalose, stress, and anabiosis, Microbiology (Moscow), 1992, vol. 61, no. 5, pp. 513–523.

    Google Scholar 

  3. Luyckx, J. and Baudonin, C., Trehalose: an intriguing disaccharide with potential for medical application in ophthalmology, Clin. Ophtalmol., 2011, vol. 5, pp. 577–581.

    CAS  Google Scholar 

  4. Richards, A.B., Krakowka, S., Dexter, L.B., Schmid, H., Wolterbeek, A.P., Waalkens-Berendsen, D.H., Shigoyuki, A., and Kurimoto, M., Trehalose: a review of properties, history of use and human tolerance, Food Chem. Toxicol., 2002, vol. 40, no. 7, pp. 871–898.

    Article  CAS  PubMed  Google Scholar 

  5. Sols, A., Gancedo, C., and Delafuente, G., Energyyielding metabolism in yeasts, in The Yeasts, Rose, C. and Harrison, J.S.L, Eds., London: Academic, 1971, vol. 2, pp. 271–307.

    CAS  Google Scholar 

  6. Beker, M.E., Damberg, B.E., and Rapoport, A.I., Anabioz mikroorganizmov (Anabiosis in Microorganisms), Riga: Zinatne, 1981.

    Google Scholar 

  7. Souza, N.O. and Panek, A.D., Location of trehalase and trehalose in yeast cells, Arch. Biochem. Biophys., 1968, vol. 125, pp. 22–28.

    Article  CAS  PubMed  Google Scholar 

  8. Iturriaga, S., Suarez, R., and Nova-Franco, B., Trehalose metabolism: from osmoprotection to signaling, Int. J. Mol. Sci., 2009, vol. 10, pp. 3793–3810.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Birch, G.G., Trehaloses, in Adv. Carbohydr. Chem., Wolfrom, M.L., Ed., New York: Academic, 1963, vol. 18, pp. 201–225.

    Google Scholar 

  10. Elbein, A.D., The metabolism of α,α-trehalose, Adv. Carbohydr. Chem. Biochem., 1974, vol. 30, pp. 227–256.

    Article  CAS  PubMed  Google Scholar 

  11. Thevelein, J.M., Regulation of trehalose mobilization in fungi, Microbiol. Rev., 1984, vol. 48, pp. 42–59.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Crowe, J.H., Hoekstra, F.A., and Crowe, L.M., Anhydrobiosis, Annu. Rev. Physiol., 1992, vol. 54, pp. 579–599.

    Article  CAS  PubMed  Google Scholar 

  13. Van Laere, A., Trehalose, reserve and/or stress metabolite?, FEMS Microbiol. Rev., 1989, vol. 63, pp. 201–210.

    Article  Google Scholar 

  14. Ferreira, J.C., Paschoalin, V.M.F., Panek, A.D., and Trugo, L.C., Comparison of three different methods for trehalose determination in yeast extracts, Food Chem., 1977, vol. 60, pp. 251–254.

    Article  Google Scholar 

  15. Araujo, P.S., Panek, A.C., Ferreira, R., and Panek, A.D., Determination of trehalose in biological samples by a simple and stable trehalase preparation, Anal. Biochem., 1989, vol. 176, pp. 432–436.

    Article  CAS  PubMed  Google Scholar 

  16. Motta, A., Romano, I., and Gambacorta, A., Rapid and sensitive NMR method for osmolyte determination, J. Microbiol. Methods, 2004, vol. 58, pp. 289–294.

    Article  CAS  PubMed  Google Scholar 

  17. Deslauriers, R., Jarrell, H.C., Byrd, R.A., and Smith, I.C.P., Observation by 13C NMR of metabolites in differentiating amoeba. Trehalose storage in encysted Acanthamoeba castellanii, FEBS Lett., 1980, vol. 118, pp. 185–190.

    Article  CAS  PubMed  Google Scholar 

  18. Ohtake, S. and Wang, Y.J., Trehalose: current use and future applications, J. Pharm. Sci., 2011, vol. 100, pp. 2020–2053.

    Article  CAS  PubMed  Google Scholar 

  19. Richtmyer, N.K., Trehalose (α-D-glucopyranosil-α-D-glucopyranoside) dihydrate, in Methods in Carbohydrate Chemistry, Whistler, R.L., and Wolfrom, M.L., Eds., New York: Academic, 1962, vol. 1, pp. 370–372.

    Google Scholar 

  20. Ohta, M., Pan, I.T., Laine, R.A., and Elbein, A.D., Trehalose-based oligosaccharides isolated from the cytoplasm of Mycobacterium smegmatis. Relation to trehalose-based oligosaccharides attached to lipids, Eur. J. Biochem., 2002, vol. 269, pp. 3142–3149.

    Article  CAS  PubMed  Google Scholar 

  21. Khan, A.A., Stocer, B.L., and Timmer, M.S.M., Trehalose glycolipid—synthesis and biological activities, Carbohydr. Res., 2012, vol. 356, pp. 25–36.

    Article  CAS  PubMed  Google Scholar 

  22. Barry, C.E., Lee, R.E., Mdluli, K., Sampson, A.E., Schroeder, B.G., Slayden, R.A., and Yuan, Y., Mycolic acids: structure, biosynthesis and physiological functions, Prog. Lipid Res., 1998, vol. 37, pp. 143–179.

    Article  CAS  PubMed  Google Scholar 

  23. Ioneda, T., Lenz, M., and Pudles, J., Chemical constitution of a glycolipid from C. diphtheriae P.W.B., Biochem. Biophys. Res. Comm., 1963, vol. 13, pp. 110–114.

    Article  CAS  Google Scholar 

  24. Penkov, S., Mende, F., Zagoriy, V., Erkut, C., Martin, R., Päsler, U., Schuhmann, K., Schwudke, D., Gruner, M., Mätler, J., Reichert-Müler, T., Shevchenko, A., Knöker, H.-J., and Kurzchalia, T.V., Maradolipids: Diacyltrehalose glycolipids specific to dauer larva in Caenorhabditis elegans, Angew. Chem., In Int. Ed., 2010, vol. 49, pp. 9430–943

    Article  CAS  Google Scholar 

  25. Schiraldi, C., Di Lernia, I., and De Rosa, M., Trehalose production: exploiting novel approaches, Trends Biotechnol., 2002, vol. 20, pp. 420–425.

    Article  CAS  PubMed  Google Scholar 

  26. Saito, K., Yamazaki, H., Ohnishi, Y., Fujimoto, S., Takahashi, E., and Horinouchi, S., Production of trehalose synthase from basidiomycete, Grifola frondosa, in Escherichia coli, Appl. Microbiol. Biotechnol., 1998, vol. 50, pp. 193–198.

    Article  CAS  Google Scholar 

  27. Cabib, E. and Leloir, L.F., The biosynthesis of trehalose phosphate, J. Am. Chem. Soc., 1957, vol. 75, pp. 259–275.

    Google Scholar 

  28. Nishimoto, T., Nakano, M., Bnakada, T., Chaen, H., Fukuda, S., Sugimoto, T., Kurimoto, M., and Tsujisaka, Y., Purification and properties of a novel enzyme, trehalose synthase, from Pimelobacter sp. R48, Biosci. Biotachnol. Biochem., 1995, vol. 60, pp. 640–644.

    Article  Google Scholar 

  29. Maruta, K., Mitsuzumi, H., Nakada, T., Kubota, M., Chaen, H., Fukuda, S., Sugimoto, T., and Kurimoto, M., Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius, Biochim. Biophys. Acta, 1996, vol. 1291, pp. 177–181.

    Article  CAS  PubMed  Google Scholar 

  30. Kubota, M., Trehalose-producing enzymes, Fine Chem., 2008, vol. 37, pp. 28–35.

    CAS  Google Scholar 

  31. Lemieux, R.U. and Bauer, H.F., A chemical synthesis of D-trehalose, Can. J. Chem., 1953, vol. 32, pp. 340–343.

    Article  Google Scholar 

  32. Kretovich, V.L., Biokhimiya rastenii (Plant Biochemistry), Moscow: Vysshaya shkola, 1986.

    Google Scholar 

  33. Karim, S., Aronsson, H., Ericson, H., Pirhonen, M., Leyman, B., Welin, B., Mantyla, E., Palva, E.T., Van Dijck, P., and Holmstrom, K.O., Improved drought tolerance without undesired side effects in transgenic plants producing trehalose, Plant Mol. Biol., 2007, vol. 64, pp. 371–386.

    Article  CAS  PubMed  Google Scholar 

  34. Fernandez, O., Bethencourt, L., Quero, A., Sangwan, R.S., and Clement, C., Trehalose and plant stress responses: friend or foe?, Trends Plant Sci., 2010, vol. 15, pp. 409–417.

    Article  CAS  PubMed  Google Scholar 

  35. Hanson, J. and Smeekens, S., Sugar perception and signaling—an update, Curr. Opin. Plant Biol., 2009, vol. 19, pp. 562–567.

    Article  Google Scholar 

  36. Detkova, E.N. and Boltyanskaya, Yu.V., Osmoadaptation of haloalkaliphilic bacteria: role of osmoregulators and their possible practical application, Microbiology (Moscow), 2007, vol. 76, no. 5, pp. 511–522.

    Article  CAS  Google Scholar 

  37. Welsh, D.T. and Herbert, R.A., Osmotically induced intracellular trehalose, but not glycine betaine accumulation promotes desiccation tolerance in Escherichia coli, FEMS Microbiol. Lett., 1999, vol. 174, pp. 57–63.

    Article  CAS  PubMed  Google Scholar 

  38. Kandror, O. and Goldberg, A., Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures, Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, pp. 9727–9732.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Caldas, T., Demont-Caulet, N., Ghazi, A., and Richarme, G., Thermoprotection by glycine betaine and choline, Microbiology (UK), 1999, vol. 145, pp. 2543–2548.

    CAS  Google Scholar 

  40. Bahn, Y.S., Xue, C., Idnurm, A., Rutherford, J.C., Heitman, J., and Cardenas, M.E., Sensing the environment: lessons from fungi, Nat. Rev. Microbiol., 2007, vol. 5, no. 1, pp. 57–69.

    Article  CAS  PubMed  Google Scholar 

  41. Barton, J.K., Den Hollander, J.A., Hopfield, J.J., and Shulman, R.G., 13C nuclear magnetic resonance study of trehalose mobilization in yeast spores, J. Bacteriol., 1982, vol. 151, pp. 177–185.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Liang, L.K., Wang, X.K., Zhu, K.L., and Chi, Z.M., Trehalose accumulation in a high-trehalose-accumulating mutants of Saccharomycopsis fibuligera sdu does not respond to stress treatments, Biochemistry (Moscow), 2006, vol. 71, no. 12, pp. 1291–1297.

    Article  CAS  Google Scholar 

  43. Feofilova, E.P. and Tereshina, V.M., Thermophilicity of mycelial fungi in the context of biochemical adaptation to thermal stress, Appl. Biochem. Microbiol., 1999, vol. 35, no. 5, pp. 486–494.

    Google Scholar 

  44. Lucio, A.K.B., Polizeli, M.L.T.M., Jorge, J.A., and Terenzi, H.F., Stimulation of hyphal growth in anaerobic cultures of Mucor rouxii by extracellular trehalose. Relevance of cell wall-bound activity of acid trehalase for trehalose utilization, FEMS Microbiol. Lett., 2000, vol. 182, pp. 9–13.

    Article  CAS  PubMed  Google Scholar 

  45. Mysiakina, I.S., Sergeeva, Ya.E., Ivashechkin, A.A., and Feofilova, E.P., Impact of morphogenetic effectors on the growth pattern and the lipid composition of the mycelium and the yeastlike cells of the fungus Mucor hiemalis, Microbiology (Moscow), 2012, vol. 81, pp. 676–683.

    Article  CAS  Google Scholar 

  46. Ngamskulrungroj, P., Himmelreich, U., Breger, J.A., Wilson, C., Chayakulkeeree, M., Krockenberger, M.B., Malik, R., Daniel, H.-V., Toffaletti, D., Djordjevic, J.T., Mylonakis, E., Meyer, W., and Perfect, J.R., The trehalose synthesis pathway is an integral part of the virulence composite for Cryptococcus gattii, Infect. Immun., 2009, vol. 77, pp. 4584–4596.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Zaragoza, O., Blazquez, M.A., and Gancedo, C., Disruption of the Candida albicans TPS1 gene, encoding trehalose-6-phosphate synthase impairs formation of hyphae and decreases infectivity, J. Bacteriol., 1998, vol. 180, pp. 3809–3815.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Al-Bader, N., Vanier, G., Hong, Liu, Gravelat, F.N., Urb, M., Hoareau, C.M.-Q., Campoli, P., Chabot, J., Filler, S.G., and Sheppard, D.C., Role of trehalose biosynthesis in Aspergillus fumigates development, stress response, and virulence, Infect. Immun., 2010, vol. 78, pp. 3007–3018.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Pedreño, Y., Gonzalez-Parraga, P., Martinez-Esparza, M., Sentandreu, R., Valentin, E., and Argüelles, J.-C., Disruption of the Candida albicans ATC1 gene encoding a cell-linked acid trehalase decreases hypha formation and infectivity without affecting resistance to oxidative stress, Microbiology (UK), 2007, vol. 153, pp. 1372–1381.

    Article  Google Scholar 

  50. Wiemken, A., Trehalose in yeast, stress protectant rather than reserve carbohydrate, Antonie van Leeuwenhoek Int. J. Gen. Mol. Microbiol., 1990, vol. 59, pp. 209–217.

    Article  Google Scholar 

  51. D’Amore, T., Crumplen, R., and Stewart, G.G., The involvement of trehalose in yeast stress tolerance, J. Ind. Microbiol., 1991, vol. 7, pp. 191–196.

    Article  Google Scholar 

  52. Sampedro, J.G., Guerra, G., Pardo, J.-P., and Uribe, S., Trehalose-mediated protection of the plasma membrane H+-ATPase from Kluyveromyces lactis during freeze-drying and rehydration, Cryobiol., 1998, vol. 37, pp. 131–138.

    Article  CAS  Google Scholar 

  53. Ribeiro, M.J.S., Leao, L.S.C., Morais, P.B., Rosa, C.A., and Panek, A.D., Trehalose accumulation by tropical yeast strains submitted to stress conditions, Antonie van Leeuwenhoek, 1999, vol. 75, pp. 245–251.

    Article  CAS  PubMed  Google Scholar 

  54. Saharan, R.K. and Sharma, S.C., Correlation studies of trehalose with oxidative stress in ethanol stressed yeast Pachysolen tannophilus, Curr. Res. J. Biol. Sci., 2010, vol. 2, pp. 300–305.

    CAS  Google Scholar 

  55. Nicolaus, B., Gambacorta, F., Basso, A.L., Riccio, R., DeRosa, M., and Grant, W.D., Trehalose in archebacteria systems, Appl. Microbiol., 1988, vol. 10, pp. 215–217.

    Article  CAS  Google Scholar 

  56. Sampedro, J.G. and Uribe, S., Trehalose-enzyme interactions result in structure stabilization and activity inhibition. The role of viscosity, Mol. Cell. Biochem., 2004, vol. 256/257, pp. 319–327.

    Article  CAS  Google Scholar 

  57. Tsvetkov, T.D., Tsonev, L.I., Tsvetkova, N.M., Koynova, R.D., and Tenchov, B.G., Effect of trehalose on the phase properties of hydrated and lyophilized dipalmitoylphosphatidylcholine multilayers, Cryobiol., 1989, vol. 26, pp. 162–169.

    Article  CAS  Google Scholar 

  58. Hoekstra, F.A. and Golovina, E.A., Membrane behavior during dehydration: implications for desiccation tolerance, Russ. J. Plant Physiol., 1999, vol. 46, no. 3, pp. 295–306.

    CAS  Google Scholar 

  59. Feofilova, E.P., Tereshina, V.M., and Gornova, I.B., Change in carbohydrate during adaptation to thermostress, Microbiology (Moscow), 1994, vol. 63, no. 5, pp. 442–445.

    Google Scholar 

  60. Feofilova, E.P. and Kuznetsova, L.S., Effect of antioxidants on the growth and lipid composition of Cunninghamella japonica under normal and stress conditions, Microbiology (Moscow), 1996, vol. 65, no. 4, pp. 409–414.

    Google Scholar 

  61. Benaroudj, N., Lee, D.H., and Goldberg, A.L., Trehalose accumulation during cellular stress protect cells and cellular proteins from damage by oxygen radicals, J. Biol. Chem., 2001, vol. 276, pp. 24261–24267.

    Article  CAS  PubMed  Google Scholar 

  62. Feofilova, E.P., Burlakova, E.B., and Kuznetsova, L.S., Role of free radical oxidation reactions in the regulation of growth and lipid production by eukaryotic and prokaryotic organisms, Prikl. Biokhim. Mikrobiol., 1987, vol. 23, no. 1, pp. 3–13.

    CAS  PubMed  Google Scholar 

  63. Higashiyama, T., Novel functions and applications of trehalose, Pure Appl. Chem., 2002, vol. 74, pp. 1263–1269.

    Article  CAS  Google Scholar 

  64. Oku, K., Watanabe, H., Kubota, M., Fukuda, S., Kurimoto, M., Tsujisaka, Y., Komori, M., Inoue, Y., and Sakurai, M., NMR and quantum chemical study on the OH…π and CH…O interactions between trehalose and unsaturated fatty acids: implication for the mechanism of antioxidant function of trehalose, J. Amer. Chem. Soc., 2003, vol. 125, pp. 12739–12748

    Article  CAS  Google Scholar 

  65. Kubota, M., New features and properties of trehalose, New Food Industry, 2005, vol. 47, pp. 17–29.

    CAS  Google Scholar 

  66. Zhang, Y., Zhang, T., Chi, Z., Wang, J.-M., Liu, G.-L., and Chi, Z.-M., Conversion of cassava starch to trehalose by Saccharomycopsis fibuligera A11 and purification of trehalose, Carbohydr. Res., 2010, vol. 80, pp. 13–18.

    Article  CAS  Google Scholar 

  67. Chang, S.W., Liu, P.T., Hsu, L.C., Chen, C.S., and Shaw, J.F., Integrated biocatalytic process for trehalose production and separation from rice hydrolysate using a bioreactor system, Food Chem., 2012, vol. 134, pp. 1745–1753.

    Article  CAS  PubMed  Google Scholar 

  68. Patist, A. and Zoerb, H., Preservation mechanisms of trehalose in food and biosystems, Colloids Surf. B: Biointerfaces, 2005, vol. 40, pp. 107–113.

    Article  CAS  PubMed  Google Scholar 

  69. Matsuo, T., Trehalose protects corneal epithelial cells from death by drying, J. Ophthalmol., 2001, vol. 85, pp. 610–612.

    CAS  Google Scholar 

  70. Han, S.F., Park, S.R., Kwon, H.B., Yi, B.Y., Lee, G.B., and Byun, M.O., Genetic engineering of drought resistant tobacco plant by introducing the trehalose phosphorylase (TP) gene from Pleurotus sajor-caju, Plant Cell Tiss. Organ Culture, 2005, vol. 82, pp. 157–158.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Feofilova.

Additional information

Original Russian Text © E.P. Feofilova, A.I. Usov, I.S. Mysyakina, G.A. Kochkina, 2014, published in Mikrobiologiya, 2014, Vol. 83, No. 3, pp. 271–283.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feofilova, E.P., Usov, A.I., Mysyakina, I.S. et al. Trehalose: Chemical structure, biological functions, and practical application. Microbiology 83, 184–194 (2014). https://doi.org/10.1134/S0026261714020064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261714020064

Keywords

Navigation