Skip to main content
Log in

Fingerprinting and phylogeny of some heterocystous cyanobacteria using short tandemly repeated repetitive and highly iterated palindrome sequences

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The presence of repeated DNA, viz. short tandemly repeated repetitive (STRR) and highly iterated palindrome (HIP) sequences was used as a typing technique for assessing genetic variability and phylogenetic relatedness of heterocystous cyanobacteria. Primers analogous to the STRR and HIP sequences were used to generate specific fingerprints for the twelve heterocystous cyanobacterial strains and a dendrogram was constructed. STRRmod and HIPTG primers revealed 100% polymorphism and yielded almost identical patterns. Anabaena sp. PCC 7120 clustered with Nostoc muscorum with both primers. Primer STRRmod supported the heterogeneity between Nostoc and Anabaena but HIPTG placed these two genera distinctly apart. STRRmod and HIPTG revealed that the members of the two orders were intermixed and thus suggesting a monophyletic origin of heterocystous cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whitton, B.A. and Potts, M., Introduction of cyanobacteria, in The Ecology of Cyanobacteria: Their Diversity in Time and Space, Whitton, B.A. and Potts, M., Eds., Dordrecht Kluwer, 2000, pp. 1–10.

    Google Scholar 

  2. Castenholz, R.W., Oxygenic photosynthetic bacteria, in Bergey’s Manual of Systematic Bacteriology, 2nd ed., Boone, D.R. and Castenholz, R.W., Eds., New York: Springer, 2001, pp. 473–474.

    Chapter  Google Scholar 

  3. Sigler, W.B., Bachofen, R., and Zeyer, J., Molecular characterization of endolithic cyanobacteria inhabiting exposed dolomite in central Switzerland, Environ. Microbiol., 2003, vol. 56, pp. 618–627.

    Article  Google Scholar 

  4. Tandeau de Marsac, N. and Houmard, U., Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms, FEMS Microbiol. Rev., 1993, vol. 104, pp. 119–190.

    Article  CAS  Google Scholar 

  5. Ferris, M.J., Kuhl, M., Wieland, A., and Ward, D.M., Cyanobacterial ecotypes in different optical microenvironments of a 68 degree C hot spring mat community revealed by 16S–23S rRNA internal transcribed spacer region variation, Appl. Environ. Microbiol., 2003, vol. 69, pp. 2893–2898.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ward, D.M., Weller, R., and Bateson, M.M., 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community, Nature, 1990, vol. 345, pp. 63–65.

    Article  CAS  PubMed  Google Scholar 

  7. Otsuka, S., Suda, S., Li, R.H., Watanabe, M., Oyaizu, H., Matsumoto, S., and Watanabe, M.M., Phylogenetic relationships between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence, FEMS Microbiol. Lett., 1999, vol. 72, pp. 15–21.

    Article  Google Scholar 

  8. Dyble, J., Paerl, H.W., and Neilan, B.A., Genetic characterization of Cylindrospermopsis raciborskii (Cyanobacteria) isolates from diverse geographic origins based on nifH and cpcBA IGS nucleotide sequence analysis, Appl. Environ. Microbiol., 2002, vol. 68, pp. 2567–2571.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Tsyrenova, D.D., Bryanskaya, A.V., Namsaraev, Z.B., and Akimov, V.N., Taxonomic and ecological characterization of cyanobacteria from some brackish and saline lakes of southern Transbaikal region, Microbiology (Moscow), 2011, vol. 80, pp. 216–227.

    Article  CAS  Google Scholar 

  10. Mishra, A.K., Shukla, E., and Singh, S.S., Phylogenetic comparison among the heterocystous cyanobacteria based on a polyphasic approach, Protoplasma, 2013, vol. 250, pp. 77–94.

    Article  PubMed  Google Scholar 

  11. Singh, P., Singh, S.S., Elster, J., and Mishra, A.K., Molecular phylogeny, population genetics, and evolution of heterocystous cyanobacteria using nifH gene sequences, Protoplasma, 2013, vol. 250, pp. 751–764.

    Article  PubMed  Google Scholar 

  12. Jaspers, E. and Overmann, J., Ecological significance of microdiversity: identical 16s rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies, Appl. Environ. Microbiol., 2004, vol. 70, pp. 4831–4839.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Haverkamp, T., Acinas, S.G., Doeleman, M., Wollenzien, U., Huisman, J., and Stal, J., Colorful microdiversity of Synechococcus strains (picocyanobacteria) isolated from the Baltic Sea, The ISME J., 2009, vol. 3, pp. 397–408.

    Article  CAS  Google Scholar 

  14. Robertson, B.R., Tezuka, N., and Watanabe, M.M., Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content, Int. J. Syst. Evol. Microbiol., 2001, vol. 51, pp. 861–871.

    Article  CAS  PubMed  Google Scholar 

  15. Mühling, M., Fuller, N.J., Millard, A., Somerfield, P.J., Marie, D., Wilson, W.H., Scanlan, D.J., Post, A.F., Joint, I., and Mann, N.H., Genetic diversity of marine Synechococcus and co-occurring cyanophage communities: evidence for viral control of phytoplankton, Environ. Microbiol., 2005, vol. 7, pp. 499–508.

    Article  PubMed  Google Scholar 

  16. Zehr, J.P., Mellon, M.T., and Hiorns, W.D., Phylogeny of cyanobacterial nifH genes: evolutionary implications and potential applications to natural assemblages, Microbiology (UK), 1997, vol. 143, pp. 1443–1450.

    Article  CAS  PubMed  Google Scholar 

  17. Henson, B.J., Watson, L.E., and Barnum, S.R., Molecular differentiation of the heterocystous cyanobacteria, Nostoc and Anabaena, based on complete NifD sequences, Curr. Microbiol., 2002, vol. 45, pp. 161–164.

    Article  CAS  PubMed  Google Scholar 

  18. Versalovic, J., Koeuth, T., and Lupski, J.R., Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes, Nucl. Acids Res., 1991, vol. 19, pp. 6823–6831.

    Article  CAS  PubMed  Google Scholar 

  19. Smith, J.K., Parry, J.D., Day, J.G., and Smith, R.J., A PCR technique based on the Hip1 interspersed repetitive sequence distinguishes cyanobacterial species and strains, Microbiology (UK), 1998, vol. 144, pp. 2791–2801.

    Article  CAS  PubMed  Google Scholar 

  20. Rasmussen, U. and Svenning, M., Fingerprinting of cyanobacteria based on PCR with primers derived from short and long tandemly repeated repetitive sequences, Appl. Environ. Microbiol., 1998, vol. 64, pp. 265–272.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Lyra, C., Laamanen, M., Lehtimäki, J.M., Surakka, A., and Sivonen, K., Benthic cyanobacteria of the genus Nodularia are non toxic, without gas vacuoles, able to glide and genetically more diverse than planktonic Nodularia, Int. J. Syst. Evol. Microbiol., 2005, vol. 55, pp. 555–568.

    Article  CAS  PubMed  Google Scholar 

  22. Robinson, N.J., Robinson, P.J., Gupta, A., Bleasby, A.J., Whitton, B.A., and Morby, A.P., Singular overrepresentation of an octameric palindrome, Hip1, in DNA from many cyanobacteria, Nucl. Acids Res., 1995, vol. 23, pp. 729–735.

    Article  CAS  PubMed  Google Scholar 

  23. Selvakumar, G. and Gopalaswamy, G., PCR based fingerprinting of Westiellopsis cultures with short tandemly repeated repetitive (STRR) and highly iterated palindrome (HIP) sequences, Biologia, 2008, vol. 63, pp. 283–288.

    Article  CAS  Google Scholar 

  24. Orcutt, K.M., Rasmussen, U., Webb, E.A., Waterbury, J.B., Gundersen, K., and Bergman, B., Characterization of Trichodesmium spp. by genetic techniques, Appl. Environ. Microbiol., 2002, vol. 68, pp. 2236–2245.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Valério, E., Chambel, L., Paulino, S., Faria, N., Pereira, P., and Tenreiro, R., Molecular identification, typing and traceability of cyanobacteria from freshwater reservoirs, Microbiology (UK), 2009, vol. 155, pp. 642–656.

    Article  PubMed  Google Scholar 

  26. Ezhilarasi, A. and Anand, N., Fingerprinting of repetitive DNA sequences in the genus Anabaena using PCR-based techniques, Afr. J. Microbiol. Res., 2010, vol. 4, pp. 590–598.

    CAS  Google Scholar 

  27. Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M., and Stanier, R.Y., Generic assignments, strain histories and properties of pure cultures of cyanobacteria, J. Gen. Microbiol., 1979, vol. 111, pp. 1–61.

    Article  Google Scholar 

  28. Zheng, W.W., Nilsson, M., Bergman, B., and Rasmussen, U., Genetic diversity and classification of cyanobacteria in different Azolla species by the use of PCR fingerprinting, Theor. Appl. Genet., 1999, vol. 99, pp. 1187–1193.

    Article  CAS  Google Scholar 

  29. Rohlf, F.J., Numerical Taxonomy and Multivariate Analysis System, version 1.80, Setauket, NY: Exeter Software, 1993.

    Google Scholar 

  30. Komárek, J. and Mareš, J., An update to modern taxonomy (2011) of freshwater planktic heterocystous cyanobacteria, Hydrobiology, 2012. doi: 10.1007/s10750-012-1027-y

    Google Scholar 

  31. Versalovic, J., Schneider, M., de Bruijn, F.J., and Lupski, J.R., Genomic fingerprinting of bacteria using repetitive sequence based PCR (rep-PCR), Methods Cell Biol., 1994, vol. 5, pp. 25–40.

    CAS  Google Scholar 

  32. Katayama, T., Okamoto, S., Narikawa, R., Fujisawa, T., Kawashima, S., Itoh, M., Ohmori, M., and Kanehisa, M., Comprehensive analysis of tandem repeat sequences in cyanobacteria genome, Genome Informatics, 2002, vol. 13, pp. 400–401.

    CAS  Google Scholar 

  33. Mazel, D., Houmard, J., Castets, A.M., and de Marsac, N., Highly repetitive DNA sequences in cyanobacterial genomes, J. Bacteriol., 1990, vol. 172, pp. 2755–2761.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Rippka, R. and Herdman, M., Pasteur Culture Collection of Cyanobacterial Strains in Axenic Culture, Catalogue and Taxonomic Handbook, vol. 1, Paris: Institut Pasteur, 1992.

    Google Scholar 

  35. Shukla, E., Singh, S.S., Singh, P., and Mishra, A.K., Chemotaxonomy of heterocystous cyanobacteria using FAME profiling as species markers, Protoplasma, 2012, vol. 249, pp. 651–661.

    Article  CAS  PubMed  Google Scholar 

  36. Lyra, C., Suomalainen, S., Gugger, M., Vezie, C., Sundman, P., Paulin, L., and Sivonen, K., Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera, Int. J. Syst. Evol. Microbiol., 2001, vol. 51, pp. 513–526.

    CAS  PubMed  Google Scholar 

  37. Svenning, M.M., Eriksson, T., and Rasmussen, U., Phylogeny of symbiotic cyanobacteria within the genus Nostoc based on 16S rDNA sequence analyses, Arch. Microbiol., 2005, vol. 183, pp. 19–26.

    Article  CAS  PubMed  Google Scholar 

  38. Halinen, K., Fewer, D.P., Shivonen, L.M., Lyra, C., Eronen, E., and Sivonen, K., Genetic diversity in strains of the genus Anabaena isolated from planktonic and benthic habitats of the Gulf of Finland (Baltic Sea), FEMS Microbiol. Ecol., 2008, vol. 64, pp. 199–208.

    Article  CAS  PubMed  Google Scholar 

  39. Fox, G.E., Wisotzkey, J.D., and Jurtshuk, P., How close is close: 16S ribosomal RNA sequence identity may not be sufficient to guarantee species identity, Int. J. Syst. Bacteriol., 1992, vol. 64, pp. 166–170.

    Article  Google Scholar 

  40. Gugger, M. and Hoffmann, L., Polyphyly of the true branching cyanobacteria (Stigonematales), Int. J. Syst. Evol. Microbiol., 2004, vol. 54, pp. 349–357.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Mishr.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukla, E., Singh, S.S. & Mishr, A.K. Fingerprinting and phylogeny of some heterocystous cyanobacteria using short tandemly repeated repetitive and highly iterated palindrome sequences. Microbiology 82, 801–808 (2013). https://doi.org/10.1134/S0026261714010123

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261714010123

Keywords

Navigation