Skip to main content
Log in

Efflux systems in Serratia marcescens

  • Review
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

A widespread bacterium Serratia marcescens (family Enterobacteriaceae) is an opportunistic pathogen and exhibits multiple drug resistance. Active removal of antibiotics and other antimicrobials from the cells by efflux systems is one of the mechanisms responsible for microbial resistance to these compounds. Among enterobacteria, efflux systems of Escherichia coli and Salmonella enterica ser. Typhimurium have been studied most extensively. Few efflux systems that belong to different families have been reported for S. marcescens. In this review, we analyzed available literature about S. marcescens efflux systems and carried out the comparative analysis of the genes encoding the RND type systems in different Serratia species and in other enterobacteria. Bioinformatical analysis of the S. marcescens genome allowed us to identify the previously unknown efflux systems based on their homology with the relevant E. coli genes. Identification of additional efflux systems in S. marcescens genome will promote our understanding of the physiology of these bacteria, will detect new molecular mechanisms of resistance, and will reveal their resistance potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MDR:

multiple drug resistance

MFS:

major facilitator superfamily

MATE:

multidrug and toxic compound extrusion family

SMR:

small multidrug resistance family

RND:

resistance-nodulation-cell division superfamily

ORF:

open reading frame

OMP:

outer membrane protein

DAPI:

4′,6-diamino-2-phenylindole

References

  1. Abbott, S., Klebsiella, Enterobacter, Citrobacter, and Serratia, in Manual of Clinical Microbiology, 7th ed., Murray, P.R., Baron, E.J., Pfaller, M.A., Tenover, F.C., and Yolken, R.H, Eds., Washington, DC: ASM, 1999, pp. 475–482.

    Google Scholar 

  2. Mahlen, S., Serratia infections: from military experiments to current practice, Clin. Microbiol. Rev., 2011, vol. 24, no. 4, pp. 755–783.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Khanna, A., Khanna, M., and Aggarwal, A., Serratia marcescens-a rare opportunistic nosocomial pathogen and measures to limit its spread in hospitalized patients, J. Clin. Diagn. Res., 2013, vol. 7, no. 2, pp. 243–246.

    PubMed Central  PubMed  Google Scholar 

  4. Rehman, T., Moore, T.A., and Seoane, L., Serratia marcescens necrotizing fasciitis presenting as bilateral breast necrosis, J. Clin. Microbiol., 2012, vol. 50, no. 10, pp. 3406–3408.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Hadzic, A., Koluder-Cimic, N., Hadzovic-Cengic, M., Gojak, R., Gavrankapetanovic, I., and Becirbegovic, S., Serratia marcescens meningitis following spinal anaesthesia and arthroscopy, Med. Arh., 2012, vol. 66, no. 3, pp. 54–55.

    Article  PubMed  Google Scholar 

  6. Voelz, A., Müller, A., Gillen, J., Le, C., Dresbach, T., Engelhart, S., Exner, M., Bates, C.J., and Simon, A., Outbreaks of Serratia marcescens in neonatal and pediatric intensive care units: clinical aspects, risk factors and management, Int. J. Hyg. Environ. Health, 2010, vol. 213, no. 2, pp. 79–87.

    Article  PubMed  Google Scholar 

  7. Maragakis, L.L., Winkler, A., Tucker, M.G., Cosgrove, S.E., Ross, T., Lawson, E., Carroll, K.C., and Perl, T.M., Outbreak of multidrug-resistant Serratia marcescens infection in a neonatal intensive care unit, Infect. Control. Hosp. Epidemiol., 2008, vol. 29, no. 5, pp. 418–423.

    Article  PubMed  Google Scholar 

  8. Iosifidis, E., Farmaki, E., Nedelkopoulou, N., Tsivitanidou, M., Kaperoni, M., Pentsoglou, V., Pournaras, S., Athanasiou-Metaxa, M., and Roilides, E., Outbreak of bloodstream infections because of Serratia marcescens in a pediatric department, Am. J. Infect. Control, 2012, vol. 40, no. 1, pp. 11–15.

    Article  PubMed  Google Scholar 

  9. Nishino, K., Nikaido, E., and Yamaguchi, A., Regulation and physiological function of multidrug efflux pumps in Escherichia coli and Salmonella, Biocem. Biophys. Acta, 2009, vol. 1794, no. 5, pp. 834–843.

    CAS  Google Scholar 

  10. Toymentseva, A.A., Schrecke, K., Sharipova, M.R., and Mascher, T., The LIKE system, a novel protein expression toolbox for Bacillus subtilis based on the liaI promoter, Microb. Cell. Fact, 2012, vol. 11, pp. 143–150.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Li, X.Z. and Nikaido, H., Efflux-mediated drug resistance in bacteria: an update, Drugs, 2009, vol. 69, no. 12, pp. 1555–1623.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Schweizer, H.P., Understanding efflux in Gram-negative bacteria: opportunities for drug discovery, Expert. Opin. Drug Discov., 2012, vol. 7, no. 7, pp. 633–642.

    Article  CAS  PubMed  Google Scholar 

  13. Nikaido, H. and Pagès, J.M., Broad-specificity efflux pumps and their role in multidrug resistance of Gramnegative bacteria, FEMS Microbiol. Rev., 2012, vol. 36, no. 2, pp. 340–363.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Martinez, J.L., Sánchez M.B., Martínez-Solano, L., Hernandez, A., Garmendia, L., Fajardo, A., and Alvarez-Ortega, C., Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems, FEMS Microbiol. Rev., 2009, vol. 33, no. 2, pp. 430–449.

    Article  CAS  PubMed  Google Scholar 

  15. Lee, E.H., Rouquette-Loughlin, C., Folster, J.P., and Shafer, W.M., FarR regulates the farAB-encoded efflux pump of Neisseria gonorrhoeae via an MtrR regulatory mechanism, J. Bacteriol., 2003, vol. 185, no. 24, pp. 7145–7152.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Lee, L.F., Chen, Y.J., Kirby, R., Chen, C., and Chen, C.W., A multidrug efflux system is involved in colony growth in Streptomyces lividans, Microbiology (UK), 2007, vol. 153, no. 4, pp. 924–934.

    Article  CAS  Google Scholar 

  17. Bredenbruch, F., Geffers, R., Nimtz, M., Buer, J., and Häussler, S., The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity, Environ. Microbiol., 2006, vol. 8, no. 8, pp. 1318–1329.

    Article  CAS  PubMed  Google Scholar 

  18. Dietrich, L.E., Price-Whelan, A., Petersen, A., Whiteley, M., and Newman, D.K., The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa, Mol. Microbiol., 2006, vol. 61, no. 5, pp. 1308–1321.

    Article  CAS  PubMed  Google Scholar 

  19. Hirakata, Y., Srikumar, R., Poole, K., Gotoh, N., Suematsu, T., Kohno, S., Kamihira, S., Hancock, R.E., and Speert, D.P., Multidrug efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa, J. Exp. Med., 2002, vol. 196, no. 1, pp. 109–118.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Buckley, A.M., Webber, M.A., Cooles, S., Randall, L.P., La Ragione, R.M., Woodward, M.J., and Piddock, L.J., The AcrAB-TolC efflux system of Salmonella enterica serovar Typhimurium plays a role in pathogenesis, Cell Microbiol., 2006, vol. 8, no. 5, pp. 847–856.

    Article  CAS  PubMed  Google Scholar 

  21. Pérez, A., Poza, M., Fernández, A., Ferández Mdel, C., Mallo, S., Merino, M., Rumbo-Feal, S., Cabral, M.P., and Bou, G., Involvement of the AcrAB-TolC efflux pump in the resistance, fitness, and virulence of Enterobacter cloacae, Antimicrob. Agents Chemother., 2012, vol. 56, no. 4, pp. 2084–2090.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Nishino, K., Latifi, T., and Groisman, E.A., Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium, Mol. Microbiol., 2006, vol. 59, no. 1, pp. 126–141.

    Article  CAS  PubMed  Google Scholar 

  23. Baucheron, S., Mouline, C., Praud, K., Chaslus-Dancla, E., and Cloeckaert, A., TolC but not AcrB is essential for multidrug-resistant Salmonella enterica serotype Typhimurium colonization of chicks, J. Antimicrob. Chemother., 2005, vol. 55, no. 5, pp. 707–712.

    Article  CAS  PubMed  Google Scholar 

  24. Drenkard, E., Antimicrobial resistance of Pseudomonas aeruginosa biofilms, Microbes Infect., 2003, vol. 5, no. 13, pp. 1213–1219.

    Article  CAS  PubMed  Google Scholar 

  25. May, T., Ito, A., and Okabe, S., Induction of multidrug resistance mechanism in Escherichia coli biofilms by interplay between tetracycline and ampicillin resistance genes, Antimicrob. Agent. Chemother., 2009, vol. 53, no. 11, pp. 4628–4639.

    Article  CAS  Google Scholar 

  26. Ito, A., Taniuchi, A., May, T., Kawata, K., and Okabe, S., Increased antibiotic resistance of Escherichia coli in mature biofilms, Appl. Environ. Microbiol., 2009, vol. 75, no. 12, pp. 4093–4100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kvist, M., Hancock, V., and Klemm, P., Inactivation of efflux pumps abolishes bacterial biofilm formation, Appl. Environ. Microbiol., 2008, vol. 74, no. 23, pp. 7376–7382.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Bhardwaj, A.K. and Mohanty, P., Bacterial efflux pumps involved in multidrug resistance and their inhibitors: rejuvenating the antimicrobial chemotherapy, Rec. Patent Anti-Infect. Drug Discov., 2012, vol. 7, no. 1, pp. 73–89.

    Article  CAS  Google Scholar 

  29. Fernandez, L. and Hancock, R.E.W., Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance, Clin. Microbiol. Rev., 2012, vol. 25, no. 4, pp. 661–681.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Putman, M., van Veen, H.W., and Konings, W.N., Molecular properties of bacterial multidrug transporters, Microb. Mol. Biol., 2000, vol. 64, pp. 672–693.

    Article  CAS  Google Scholar 

  31. Saier, M.H., Jr. and Paulsen, I.T., Phylogeny of multidrug transporters, Semin. Cell. Dev. Biol., 2001, vol. 12, no. 3, pp. 205–213.

    Article  CAS  PubMed  Google Scholar 

  32. Paulsen, I.L., Multidrug efflux pumps and resistance: regulation and evolution, Curr. Opin. Microbiol., 2003, vol. 6, pp. 446–451.

    Article  CAS  PubMed  Google Scholar 

  33. Nikaido, E., Yamaguchi, A., and Nishino, K., AcrAB multidrug efflux pump regulation in Salmonella enterica serovar Typhimurium by RamA in response to environmental signals, J. Biol. Chem., 2008, vol. 283, pp. 24245–24253.

    Article  CAS  PubMed  Google Scholar 

  34. Moussatova, A. and Kandt, C., O’Mara, M.L., and Tieleman, D.P. ATP-binding cassette transporters in Escherichia coli, Biochim. Biophys. Acta, 2008, vol. 1778, pp. 1757–1771.

    Article  CAS  PubMed  Google Scholar 

  35. Kobayashi, N., Nishino, K., and Yamaguchi, A., Novel macrolide-specific ABC-type efflux transporter in Escherichia coli, J. Bacteriol., 2001, vol. 183, pp. 5639–5644.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Nikaido, H., Structure and mechanism of RND-type multidrug efflux pumps, Adv. Enzymol. Relat. Areas Mol. Biol., 2011, vol. 77, pp. 1–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Chollet, R., Chevalier, J., Bryskier, A., and Pages, J.M., The AcrAB-TolC pump is involved in macrolide resistance but in telithromycin efflux in Enterobacter aerogenes and Escherichia coli, Antimicrob. Agents. Chemother., 2004, vol. 48, pp. 3621–3624.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Tikhonova, E.B., Yamada, Y., and Zgurskaya, H.I., Sequential mechanism of assembly of multidrug efflux pump AcrAB-TolC, Chem. Biol., 2011, vol. 18, no. 4, pp. 454–463.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Lee, M., Jun, S.Y., Yoon, B.Y., Song, S., Lee, K., and Ha, N.C., Membrane fusion proteins of type I secretion system and tripartite efflux pumps share a binding motif for TolC in gram-negative bacteria, PLoS One, 2012, vol. 7, no. 7, p. e40460.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Zgurskaya, H.I. and Nikaido, H., AcrA is a highly asymmetric protein capable of spanning the periplasm, J. Mol. Biol., 1999, vol. 285, no. 1, pp. 409–420.

    Article  CAS  PubMed  Google Scholar 

  41. Misra, R. and Bavro, V.N., Assembly and transport mechanism of tripartite drug efflux systems, Biochim. Biophys. Acta, 2009, vol. 1794, no. 5, pp. 817–825.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Yang, S., Clayton, S.R., and Zechiedrich, E.L., Relative contributions of the AcrAB, MdfA and NorE efflux pumps to quinolone resistance in Escherichia coli, J. Antimicrob. Chemother., 2003, vol. 51, pp. 545–556.

    Article  CAS  PubMed  Google Scholar 

  43. Minato, Y., Shahcheraghi, F., Ogawa, W., Kuroda, T., and Tsuchiya, T., Functional gene cloning and characterization of the SsmE multidrug efflux pump from Serratia marcescens, Biol. Pharm. Bull., 2008, vol. 31, no. 3, pp. 516–519.

    Article  CAS  PubMed  Google Scholar 

  44. Routh, M.D., Su, C.C., Zhang, Q., and Yu, E.W., Structures of AcrR and CmeR: insight into the mechanisms of transcriptional repression and multi-drug recognition in the TetR family of regulators, Biochim. Biophys. Acta, 2009, vol. 1794, no. 5, pp. 844–851.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Alekshun, M.N. and Levy, S.B., Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon, Antimicrob. Agents. Chemother., 1997, vol. 41, pp. 2067–2075.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Martin, R.G. and Rosner, J.L., Analysis of microarray data for the marA, soxS, and rob regulons of Escherichia coli, Methods Enzymol., 2003, vol. 370, pp. 278–280.

    Article  CAS  PubMed  Google Scholar 

  47. Nishino, K., Honda, T., and Yamaguchi, A., Genomewide analyses of Escherichia coli gene expression responsive to the BaeSR two-component regulatory system, J. Bacteriol., 2005, vol. 187, pp. 1763–1772.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Berlanga, M., Vazquez, J.L., Hernandez-Borrel, J., Montero, M.T., and Vinas, M., Evidence of an efflux pump in Serratia marcescens, Microb. Drug Resist., 2000, vol. 6, pp. 111–117.

    Article  CAS  PubMed  Google Scholar 

  49. Kumar, A. and Worobec, E.A., Fluoroquinolone resistance of Serratia marcescens: involvement of a proton gradient-dependent efflux pump, J. Antimicrob. Chemother., 2002, vol. 50, pp. 593–596.

    Article  CAS  PubMed  Google Scholar 

  50. Kumar, A. and Worobec, E.A., Cloning, sequencing, and characterization of the Sde AB multidrag efflux pump of Serratia marcescens, Antimicrob. Agents Chemother., 2005, vol. 49, pp. 1495–1501.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Kumar, A. and Worobec, E.A., HasF, a TolC-homolog of Serratia marcescens, is involved in energy-dependent efflux, Can. J. Microbiol., 2005, vol. 51, pp. 497–500.

    Article  CAS  PubMed  Google Scholar 

  52. Barbosa, T.M. and Levy, S.B., Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA, J. Bacteriol., 2000, vol. 182, pp. 3467–3474.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Begic, S. and Worobec, E.A., Characterization of the Serratia marcescens SdeCDE multidrug efflux pump studied via gene knockout mutagenesis, Can. J. Microbiol., 2008, vol. 54, pp. 411–416.

    Article  CAS  PubMed  Google Scholar 

  54. Maseda, H., Hashida, Y., Konaka, R., Shirai, A., Omasa, T., and Nakae, T., Mutation in the sdeS gene promotes expression of the sdeAB efflux pump genes and multidrug resistance in Serratia marcescens, Antimicrob. Agent. Chemother., 2011, vol. 55, no. 6, pp. 2922–2926.

    Article  CAS  Google Scholar 

  55. Maseda, H., Hashida, Y., Konaka, R., Shirai, A., and Kourai, H., Mutational upregulation of a resistancenodulation-cell division-type multidrug efflux pump, SdeAB, upon exposure to a biocide, cetilpyridium chloride, and antibiotic resistance in Serratia marcescens, Antimicrob. Agent. Chemother., 2009, vol. 53, no. 12, pp. 5230–5235.

    Article  CAS  Google Scholar 

  56. Dalvi, S.D. and Worobec, E.A., Gene expression analysis of the SdeAB multidrug efflux pump in antibioticresistant clinical isolates of Serratia marcescens, Indian J. Med. Microbiol., 2012, vol. 30, no. 3, pp. 302–307.

    Article  CAS  PubMed  Google Scholar 

  57. Chen, J., Lee, E.W., Kuroda, T., Mizushima, T., and Tsuchiya, T., Multidrug resistance in Serratia marcescens and cloning of genes responsible for the resistance, Biol. Pharm. Bull., 2003, vol. 26, no. 3, pp. 391–393.

    Article  CAS  PubMed  Google Scholar 

  58. Chen, J., Kuroda, T., Huda, M.N., Mizushima, T., and Tsuchiya, T., An PND-type multidrug efflux pump SdeXY from Serratia marcescens, J. Antimicrob. Chemother., 2003, vol. 52, pp. 176–179.

    Article  CAS  PubMed  Google Scholar 

  59. Hornsey, M., Ellington, M.J., Doummmith, M., Hudson, S., Livermore, D.M., and Woodford, N., Tigecycline resistance in Serratia marcescens associated whith up-regulation of the SdeXY-HasF efflux system also active against ciprofloxacin and cefpirome, J. Antimicrob. Chemother., 2010, vol. 65, pp. 479–482.

    Article  CAS  PubMed  Google Scholar 

  60. Piddock, L.J., Multidrug-resistance efflux pumpsnot just for resistance, Nat. Rev. Microbiol., 2006, vol. 4, no. 8, pp. 629–636.

    Article  CAS  PubMed  Google Scholar 

  61. Rosenberg, E.Y., Ma, D., and Nikaido, H., AcrD of Escherichia coli is an aminoglycoside efflux pump, J. Bacteriol., 2000, vol. 182, pp. 1754–1756.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Zgurskaya, H.I. and Nikaido, H., Multidrug resistance mechanisms: drug efflux across two membranes, Mol. Microbiol., 2000, vol. 37, pp. 219–225.

    Article  CAS  PubMed  Google Scholar 

  63. Ma, D., Alberi, M., Lynch, C., Nikaido, H., and Hearst, J.E., The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals, Mol. Microbiol., 1996, vol. 19, pp. 101–112.

    Article  CAS  PubMed  Google Scholar 

  64. Piddock, L.J., Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria, Clin. Microb. Rev., 2006, vol. 19, no. 2, pp. 382–402.

    Article  CAS  Google Scholar 

  65. Eaves, D.J., Ricci, V., and Piddock, J., Expression of acrB, acrF, acrD, marA, and soxS in Salmonella enterica serovar Typhimurium: role in multiple antibiotic resistance, Antimicrob. Agents. Chemother., 2004, vol. 48, pp. 1145–1150.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Aires, J.R., Kohler, T., Nikaido, H., and Plesiat, P., Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides, Antimicrob. Agents. Chemother., 1999, vol. 43, pp. 2624–2628.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Nishino, K., Nikaido, E., and Yamaguchi, A., Regulation of multidrug efflux systems involved in multidrug and metal resistance of Salmonella enterica serovar Typhimurium, J. Bacteriol., 2007, vol. 189, no. 24, pp. 9066–9075.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Nishino, K., Honda, T., and Yamaguchi, A., Genomewide analyses of Escherichia coli gene expression responsive to the BaeSR two-component regulatory system, J. Bacteriol., 2005, vol. 187, pp. 1763–1772.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Shahcheraghi, F., Minato, Y., Chen, J., Mizushima, T., Ogawa, W., Kuroda, T., and Tsuchiya, T., Molecular cloning and characterization of a multidrug efflux pump, SmfY, from Serratia marcescens, Biol. Pharm. Bull., 2007, vol. 30, no. 4, pp. 798–800.

    Article  CAS  PubMed  Google Scholar 

  70. Lubelski, J., Mazurkiewicz, P., van Merkerk, R., Konings, W.N., and Driesen, A.J., ydaG and ydbA of Lactococcus lactis encode a heterodimeric ATP-binding cassette-type multidrug transporter, J. Biol. Chem., 2004, vol. 279, pp. 34449–34455.

    Article  CAS  PubMed  Google Scholar 

  71. Margolles, A., Florez, A.B., Moreno, J.A., and van Sinderen de Los Reyes-Gavilan, C.G., Two membrane proteins from Bifidobacterium breve UCC2003 constitute an ABC-type multidrug transporter, Microbiology (UK), 2006, vol. 152, pp. 3497–3505.

    Article  CAS  Google Scholar 

  72. Steinfels, E., Orelle, C., Fantino, J.R., Dalmas, O., Rigaud, J.L., Denizot, F., di Pietro, A., and Jault, J.M., Characterization of YvcC (BmrA), a multidrug ABC transporter constitutively expressed in Bacillus subtilis, Biochemistry, 2004, vol. 43, no. 3, pp. 7491–7502.

    Article  CAS  PubMed  Google Scholar 

  73. Matsuo, T., Chen, J., Minato, Y., Ogawa, W., Mizushima, T., Kuroda, T., and Tsuchiya, T., SmdAB, a heterodimeric ABC-type multidrug efflux pump, in Serratia marcescens, J. Bacteriol., 2008, vol. 190, no. 2, pp. 648–654.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Nishino, K., Bacterial multidrug exporters: insights into acquisition of multidrug resistance, Science [online publication], 2005, http://www.sciencemag.org/feature/data/prizes/ge/2004/nishino.dlt

    Google Scholar 

  75. Ren, Q. and Paulsen, I.T., Large-scale comparative genomic analyses of cytoplasmic membrane transport system in prokaryotes, J. Mol. Microbiol. Biotechnol., 2007, vol. 12, pp. 165–179.

    Article  CAS  PubMed  Google Scholar 

  76. Nishino, K. and Yamaguchi, A., Analysis of a complete library of putative drug transporter genes in Escherichia coli, J. Bacteriol., 2001, vol. 183, no. 20, pp. 5803–5812.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Mardanova.

Additional information

Original Russian Text © A.M. Mardanova, L.M. Bogomol’naya, Yu.D. Romanova, M.R. Sharipova, 2014, published in Mikrobiologiya, 2014, Vol. 83, No. 1, pp. 3–14.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mardanova, A.M., Bogomol’naya, L.M., Romanova, Y.D. et al. Efflux systems in Serratia marcescens . Microbiology 82, 668–679 (2013). https://doi.org/10.1134/S0026261714010093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261714010093

Keywords

Navigation