Skip to main content

Advertisement

Log in

Culturable psychrotolerant methanotrophic bacteria in landfill cover soil

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Methanotrophs closely related to psychrotolerant members of the genera Methylobacter and Methylocella were identified in cultures enriched at 10°C from landfill cover soil samples collected in the period from April to November. Mesophilic methanotrophs of the genera Methylobacter and Methylosinus were found in cultures enriched at 20°C from the same cover soil samples. A thermotolerant methanotroph related to Methylocaldum gracile was identified in the culture enriched at 40°C from a sample collected in May (the temperature of the cover soil was 11.5–12.5°C). In addition to methanotrophs, methylobacteria of the genera Methylotenera and Methylovorus and members of the genera Verrucomicrobium, Pseudomonas, Pseudoxanthomonas, Dokdonella, Candidatus Protochlamydia, and Thiorhodospira were also identified in the enrichment cultures. A methanotroph closely related to the psychrotolerant species Methylobacter tundripaludum (98% sequence identity of 16S rRNA genes with the type strain SV96T) was isolated in pure culture. The introduction of a mixture of the methanotrophic enrichments, grown at 15°C, into the landfill cover soil resulted in a decrease in methane emission from the landfill surface in autumn (October, November). The inoculum used was demonstrated to contain methanotrophs closely related to Methylobacter tundripaludum SV96.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murrell, J.C., The aerobic methane oxidizing bacteria (methanotrophs), in Handbook of Hydrocarbon and Lipid Microbiology, Timmis, K.N., Ed., Berlin: Springer-Verlag, 2010, pp. 1953–1966.

    Chapter  Google Scholar 

  2. Vorobev, A.V., Baani, M., Doronina, N.V., Brady, A.L., Liesack, W., Dunfield, P.F., and Dedysh, S.N., Methyloferula stellate gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase, Int. J. Syst. Evol. Microbiol., 2011, vol. 61, pp. 2456–2463.

    Article  CAS  PubMed  Google Scholar 

  3. Iguchi, H., Yurimoto, H., and Sakai, Y., Methylovulum miyakonense gen. nov., sp. nov., a type I methanotroph isolated from forest soil, Int. J. Syst. Evol. Microbiol., 2011, vol. 61, pp. 810–815.

    Article  CAS  PubMed  Google Scholar 

  4. Geymonat, E., Ferrando, L., and Tarlera, S.E., Methylogaea oryzae gen. nov., sp. nov., a mesophilic methanotroph isolated from a rice paddy field, Int. J. Syst. Evol. Microbiol., 2011, vol. 61, pp. 2568–2572.

    Article  PubMed  Google Scholar 

  5. Hirayama, H., Fuse, H., Abe, M., Miyazaki, M., Nakamura, T., Nunoura, T., Furushima, Y., Yamamoto, H., and Takai, K., Methylomarinum vadi gen. nov., sp. nov., a marine methanotroph isolated from two distinct marine environments in japan, Int. J. Syst. Evol. Microbiol., 2013, vol. 63, pp. 1073–1082.

    Article  CAS  PubMed  Google Scholar 

  6. Op den Camp, H.J.M., Islam, T., Stott, M.B., Harhangi, H.R., Hynes, A., Schouten, S., Jetten, M.S.M., Birkeland, N.-K., Pol, A., and Dunfield, P.F., Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia, Environ. Microbiol. Rep., 2009, vol. 1, pp. 293–306.

    Article  Google Scholar 

  7. Kallistova, A.Yu., Glagolev, M.V., Shnyrev, N.A., Kevbrina, M.V., Nekrasova, V.K., Chistotin, M.V., Faustova, E.V., Serebryanaya, M.I., and Nozhevnikova, A.N., Methane emission from the landfill surface as dependent on the landfill age and the season, Zh. Ekol. Khim, 2006, vol. 15, no. 1, pp. 13–21.

    Google Scholar 

  8. Nozhevnikova, A.N., Kallistova, A.Yu., and Kevbrina, M.V., Methane emission and oxidation at a landfill: seasonal monitoring, in Trudy Instituta mikrobiologii im. S.N. Vinogradskogo RAN (Proceedings of Winogradsky Institute of Microbiology, RAS), Moscow: Nauka, 2006, vol. XIII, pp. 172–192.

    Google Scholar 

  9. Kallistova A.Yu., Kevbrina, M.V., Nekrasova, V.K., Shnyrev, N.A., Einola, J.-K.M., Kulomaa, M.S., Rintala, J.A., and Nozhevnikova, A.N., Enumeration of methanotrophic bacteria in the cover soil of an aged municipal landfill, Microb. Ecol., 2007, vol. 54, pp. 637–645.

    Article  PubMed  Google Scholar 

  10. Kallistova, A.Yu., Kevbrina, M.V., Nekrasova, V.K., Glagolev, M.V., Serebryanaya, M.I., and Nozhevnikova, A.N., Methane oxidation in landfill cover soil, Microbiology (Moscow), 2005, vol. 74, no. 5, pp. 608–614.

    Article  CAS  Google Scholar 

  11. Stralis-Pavese, N., Sessitsch, A., Weilharter, A., Reichenauer, T., Riesing, J., Csontos, J., Murrell, J.C., and Bodrossy, L., Optimization of diagnostic microarray for application in analyzing landfill methanotroph communities under different plant covers, Environ. Microbiol., 2004, vol. 6, pp. 347–363.

    Article  CAS  PubMed  Google Scholar 

  12. Gebert, J., Stralis-Pavese, N., Alawi, M., and Bodrossy, L., Analysis of methanotrophic communities in landfill biofilters using diagnostic microarray, Environ Microbiol., 2008, vol. 10, pp. 1175–1188.

    Article  CAS  PubMed  Google Scholar 

  13. Gebert, J., Singh, B.K., Pan, Y., and Bodrossy, L., Activity and structure of methanotrophic communities in landfill cover soils, Environ. Microbiol. Rep., 2009, vol. 1, no. 5, pp. 414–423.

    Article  CAS  PubMed  Google Scholar 

  14. Chen, Y., Dumont, M.G., Cebron, A., and Murrell, J.C., Identification of active methanotrophs in a landfill cover soil through detection of expression of 16s rRNA and functional genes, Environ. Microbiol., 2007, vol. 9, pp. 2855–2869.

    Article  CAS  PubMed  Google Scholar 

  15. Cebron, A., Bodrossy, L., Chen, Y., Singer, A.C., Thompson, I.P., Prosser, J.I., and Murrell, J.C., Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing, FEMS Microbiol. Ecol., 2007, vol. 62, pp. 12–23.

    Article  CAS  PubMed  Google Scholar 

  16. Hery, M., Singer, A.C., Kumaresan, D., Bodrossy, L., Stralis-Pavese, N., Prosser, J.I., Thompson, I.P., and Murrell, J.C., Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill cover soil, Int. J. Syst. Evol. Microbiol., 2008, vol. 2, pp. 92–104.

    CAS  Google Scholar 

  17. Lin, B., Monreal, C.M., Tambong, J.T., Miguez, C.B., and Carrasco-Medina, L., Phylogenetic analysis of methanotrophic communities in cover soils of a landfill in Ontario, Can. J. Microbiol., 2009, vol. 55, pp. 1103–1112.

    Article  CAS  PubMed  Google Scholar 

  18. Kumaresan, D., Abell, G.C.J., Bodrossy, L., StralisPavese, N., and Murrell, J.C., Spatial and temporal diversity of methanotrophs in landfill cover soil are differentially related to soil abiotic factors, Environ. Microbiol. Rep., 2009, vol. 1, no. 5, pp. 398–407.

    Article  CAS  PubMed  Google Scholar 

  19. Ait-Benicho, S., Jugnia, L.-B., Greer, C.W., and Cabral, A.R., Methanotrophs and methanotrophic activity in engineered landfill biocovers, Waste Manag., 2009, vol. 29, pp. 2509–2517.

    Article  Google Scholar 

  20. He, P., Yang, N., Fang, W., Lu, F., and Shao, L., Interaction and independence on methane oxidation of landfill cover soil among three impact factors: water, oxygen and ammonium, Front. Environ. Sci. Engin. China, 2011, vol. 5, no. 2, pp. 175–185.

    Article  CAS  Google Scholar 

  21. Börjesson, G., Sund, I. and Svensson, B., Microbial oxidation of CH4 at different temperatures in landfill cover soils, FEMS Microbiol. Ecol., 2004, vol. 48, pp. 305–312.

    Article  PubMed  Google Scholar 

  22. Gal’chenko, V.F., Metanotrofnye bakterii (Methanotrophic Bacteria), Moscow: GEOS, 2001.

    Google Scholar 

  23. Pimenov, N.V., Kallistova, A.Yu., Rusanov, I.I., Yusupov, S.K., Montonen, L., Jurgens, G., Munster, U., Nozhevnikova, A.N., and Ivanov, M.V., Methane formation and oxidation in the meromictic oligotrophic Lake Gek-Gel (Azerbaijan), Microbiology (Moscow), 2010, vol. 79, no. 2, pp. 247–252.

    Article  CAS  Google Scholar 

  24. Heuer, H., Krsek, M., Baker, P., Smalla, K., and Wellington, E.M.H., Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients, Appl. Environ. Microbiol., 1997, vol. 63, pp. 3233–3241.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Wise, M.G., McArthur, J.V., and Shimkets, L.J., Methanotroph diversity in landfill soil: isolation of novel type I and type II methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis, Appl. Environ. Microbiol., 1999, vol. 65, pp. 4887–4897.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Jurgens, G., Glöckner, F.-O., Amann, R., Saano, A., Montonen, L., Likolammi, M., and Münster, U., Identification of novel Archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization, FEMS Microbiol. Ecol., 2000, vol. 34, pp. 45–56.

    CAS  PubMed  Google Scholar 

  27. Nozhevnikova, A.N., Lifshits, A.B., Lebedev, V.S., and Zavarzin, G.A., Emission of methane into the atmosphere from landfills in the former USSR, Chemosphere, 1993, vol. 26, pp. 401–417.

    Article  CAS  Google Scholar 

  28. Wartiainen, I., Hestnes, A.G., McDonald, I.R., and Svenning, M.M., Methylobacter tundripaludum sp. nov., a methane-oxidizing bacterium from Arctic wetland soil on the Svalbard islands, Norway (78° N), Int. J. Syst. Evol. Microbiol., 2006, vol. 56, pp. 109–113.

    Article  CAS  PubMed  Google Scholar 

  29. Dedysh, S.N. and Dunfield, P.F., Facultative methane oxidizers, in Handbook of Hydrocarbon and Lipid Microbiology, Timmis, K.N., Ed., Berlin: Springer-Verlag, 2010, pp. 1967–1976.

    Chapter  Google Scholar 

  30. Kevbrina, M.V., Okhapkina, A.A., Akhlynin, D.S., Kravchenko, I.K., Nozhevnikova, A.N., and Gal’chenko, V.F., Growth of mesophilic methanotrophs at low temperatures, Microbiology (Moscow), 2001, vol. 70, no. 4, pp. 384–391.

    Article  CAS  Google Scholar 

  31. Bodrossy, L., Holmes, E.M., Holmes, A.J., Kovacs, K.L., and Murrell, J.C., Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov., Arch. Microbiol., 1997, vol. 168, pp. 493–503.

    Article  CAS  PubMed  Google Scholar 

  32. Doronina, N.V., Trotsenko, Yu.A., Kolganova, T.V., Tourova, T.P., and Salkinoja-Salonen, M.S., Methylobacillus pratensis sp. nov., a novel non-pigmented, aerobic, obligately methylotrophic bacterium isolated from meadow grass, Int. J. Syst. Evol. Microbiol., 2004, vol. 54, pp. 1453–1457.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Kallistova.

Additional information

Original Russian Text © A.Yu. Kallistova, L. Montonen, G. Jurgens, U. Münster, M.V. Kevbrina, A.N. Nozhevnikova, 2014, published in Mikrobiologiya, 2014, Vol. 83, No. 1, pp. 109–118.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kallistova, A.Y., Montonen, L., Jurgens, G. et al. Culturable psychrotolerant methanotrophic bacteria in landfill cover soil. Microbiology 82, 847–855 (2013). https://doi.org/10.1134/S0026261714010044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261714010044

Keywords