, Volume 82, Issue 6, pp 698–706 | Cite as

Methanocalculus natronophilus sp. nov., a new alkaliphilic hydrogenotrophic methanogenic archaeon from a soda lake, and proposal of the new family Methanocalculaceae

  • T. N. Zhilina
  • D. G. Zavarzina
  • V. V. Kevbrin
  • T. V. Kolganova
Experimental Articles


A mesophilic hydrogenotrophic methanogenic archaeon, strain Z-7105T, was isolated from the bottom sediments of a collector in the vicinity of a soda lake Tanatar II (Altai, Russia). The cells were motile, irregular cocci 0.2–1.2 μm in diameter. The organism was an obligate alkaliphile, growing within a pH range from 8.0 to 10.2, with the optimum at pH 9.0–9.5. It was obligately dependent on carbonates, growing at 0.5 to 1.6 M total carbonates with the optimum at 0.7–0.9 M. Sodium ions were also obligately required at concentrations from 0.9 to 3.3 M Na+ (optimum at 1.4–1.9 M). The organism was halotolerant, but Clions were not required. Hydrogen and formate were used as electron donors. Acetate was required for anabolism. The DNA G+C content was 50.2 mol %. According to the results of its 16S rRNA gene sequence analysis, the isolate belonged to the genus Methanocalculus, being the first known alkaliphilic member of this genus. Its similarity to the neutrophilic and halotolerant Methanocalculus species (M. halotolerans, M. taiwanensis, M. pumilus, and M. chunghsingensis) was 98.2–97.1%, which is within the interspecific range for this genus. The level of DNA-DNA hybridization between strain Z-7105T and the Methanocalculus type species M. halotolerans DSM 14092T was 32%. The genus Methanocalculus, including the new isolate and the previously described species, is distant from other genera of methanogens (<90% 16S rRNA gene similarity). Based on significant phenotypic differences and the results of phylogenetic analysis, including DNA-DNA hybridization, it is proposed to assign strain Z-7105T (=DSM 25006T, =VKM B-2765T) to the new species Methanocalculus natronophilus sp. nov., and to incorporate the genus into the new family Methanocalculaceae fam. nov.


soda lakes alkaliphiles methanogens hydrogenotrophs archaea Methanocalculus natronophilus Methanocalculaceae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zavarzin, G.A., Epicontinental soda lake are probable relict biotopes of terrestrial biota formation, Microbiology (Moscow), 1993, vol. 62, pp. 473–479.Google Scholar
  2. 2.
    Zhilina, T.N. and Zavarzin, G.A., Alkaliphilic anaerobic community at pH 10, Curr. Microbiol., 1994, vol. 28, pp. 109–112.CrossRefGoogle Scholar
  3. 3.
    Zavarzin, G.A., Zhilina, T.N., and Kevbrin, V.V., The alkaliphilic microbial community and its functional diversity, Microbiology (Moscow), 1999, vol. 68, pp. 503–521.Google Scholar
  4. 4.
    Zavarzin, G.A. and Zhilina, T.N., Anaerobic chemotrophic alkaliphiles, in Journey to Diverse Microbial Worlds-Adaptation to Exotic Environments, Seckbach, J., Ed., The Netherlands: Kluwer Academic, 2000, pp. 191–208.CrossRefGoogle Scholar
  5. 5.
    Trudy Instituta mikrobiologii im. S.N. Vinogradskogo (Proceedings of Winogradsky Institute of Microbiology), vol. 14: Alkalofil’nye mikrobnye soobshchestva (Alkaliphilic Microbial Communities), Gal’chenko, V.F., Ed., Moscow: Nauka, 2007.Google Scholar
  6. 6.
    Zavarzin, G.A., Evolyutsiya prokariotnoi biosfery: Mikroby v krugovorote zhizni: 120 let spustya: Chtenie im. S.N. Vinogradskogo (Evolution of the Prokaryotic Biosphere. Microbes in the Life Cycles: 120 Years Later: Lecture in Honor of S.N. Winogradsky), Kolotilova, N.N., Ed., Moscow: MAKS Press, 2011.Google Scholar
  7. 7.
    Zavarzina, D.G. and Zhilina, T.N., Anaerobic communities of soda lakes as analogues of Precambrian paleocontinental microbiota, Rannyaya kolonizatsiya sushi (Early Colonization of the Land), Rozhnov, S.V., Ed., Moscow: PIN RAN, 2012, pp. 69–91.Google Scholar
  8. 8.
    Zhilina, T.N., Zavarzina, D.G., Panteleeva, A.N., Osipov, G.A., Kostrikina, N.A., Tourova, T.P., and Zavarzin, G.A., Fuchsiella alkaliacetigena gen. nov., sp. nov., an alkaliphilic, lithoautotrophic homoacetogen from a soda lake, Int. J. Syst. Evol. Microbiol., 2012, vol. 62, pp. 1666–1673.PubMedCrossRefGoogle Scholar
  9. 9.
    Zavarzin, G.A., Zhilina, T.N., and Pikuta, E.V., Secondary anaerobes in haloalkaliphilic communities in lakes of Tuva, Microbiology (Moscow), 1996, vol. 65, no. 4, pp. 480–486.Google Scholar
  10. 10.
    Namsaraev, B.B., Zhilina, T.N., Kulyrova, A.V., and Gorlenko, V.M., Bacterial methanogenesis in soda lakes of the southeastern Transbaikal region, Microbiology (Moscow), 1999, vol. 68, pp. 586–591.Google Scholar
  11. 11.
    Sorokin, D.Y., Gorlenko, V.M., Namsaraev, B.B., Namsaraev, Z.B., Lysenko, A.M., Eshinimaev, B.T., Khmelenina, V.N., and Trotsenko, Y.A., Prokaryotic communities of the north-eastern Mongolian soda lakes, Hydrobiologia, 2004, vol. 522, pp. 235–248.CrossRefGoogle Scholar
  12. 12.
    Worakit, S., Boone, D.R., Mah, R.A., AbdelSamie, M.-E., and El-Halwagi, M.M., Methanobacterium alcaliphilum sp. nov., an H2-utilizing methanogen that grows at high pH values, Int. J. Syst. Bacteriol., 1986, vol. 36, pp. 380–382.CrossRefGoogle Scholar
  13. 13.
    Wolin, E.A., Wolin, M.J., and Wolfe, R.S., Formation of methane by bacterial extracts, J. Biol. Chem., 1963, vol. 238, pp. 2882–2886.PubMedGoogle Scholar
  14. 14.
    Kevbrin, V.V. and Zavarzin, G.A., The effect of sulfur compounds on the growth of halophilic homoacetic bacterium Acetohalobium arabaticum, Microbiology (Moscow), 1992, vol. 61, pp. 563–567.Google Scholar
  15. 15.
    Garnova, E.S., Zhilina, T.N., Tourova, T.N., and Lysenko, A.M., Anoxynatronum sibiricum gen. nov., sp. nov. alkaliphilic saccharolytic anaerobe from cellulolytic community of Nizhnee Beloe (Transbaikal region), Extremophiles, 2003, vol. 7, pp. 213–220.PubMedGoogle Scholar
  16. 16.
    Birnboim, H.C. and Doly, J., A rapid alkaline extraction procedure for screening recombinant plasmid DNA, Nucleic Acids Res., 1979, vol. 7, pp. 1513–1523.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Lane, D.J., 16S/23S rRNA sequencing, in Nucleic Acid Techniques in Bacterial Systematics, Stackebrandt, E. and Goodfellow, M., Eds., Chichester: John Wiley & Sons, 1991, pp. 115–175.Google Scholar
  18. 18.
    Sanger, F., Nicklen, S., and Coulson, A.R., DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. USA, 1977, vol. 84, pp. 5463–5467.CrossRefGoogle Scholar
  19. 19.
    Gouy, M., Guindon, S., and Gascuel, O., SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building, Mol. Biol. Evol., 2010, vol. 27, pp. 221–224.PubMedCrossRefGoogle Scholar
  20. 20.
    Lake, J.A., Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 1455–1459.PubMedCrossRefGoogle Scholar
  21. 21.
    Boone, D.R. and Whitman, W.B., Proposal of minimal standards for describing new taxa of methanogenic bacteria, Int. J. Syst. Bacteriol., 1988, vol. 38, pp. 212–219.CrossRefGoogle Scholar
  22. 22.
    Lai, M.C., Chen, S.C., Shu, C.M., Chiou, M.S., Wang, C.C., Chuang, M.J., Hong, T.Y., Liu, C.C., Lai, L.J., and Hua, J.J., Methanocalculus taiwanensis sp. nov., isolated from an estuarine environment, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 1799–1806.PubMedCrossRefGoogle Scholar
  23. 23.
    Mori, K., Yamamoto, H., Kamagata, Y., Hatsu, M., and Takamizawa, K., Methanocalculus pumilus sp. nov., a heavy-metal-tolerant methanogen isolated from a waste-disposal site, Int. J. Syst. Evol. Microbiol., 2000, vol. 50, pp. 1723–1729.PubMedGoogle Scholar
  24. 24.
    Lai, M.C., Lin, C.C., Yu, P.H., Huang, Y.F., and Chen, S.C., Methanocalculus chunghsingensis sp. nov., isolated from an estuary and a marine fishpond in Taiwan, Int. J. Syst. Evol. Microbiol., 2004, vol. 54, pp. 183–189.PubMedCrossRefGoogle Scholar
  25. 25.
    Ollivier, B., Fardeau, M.-L., Cayol, J.-L., Magot, M., Patel, B.K.C., Prensier, G., and Garcia, J.-L., Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well, Int. J. Syst. Bacteriol., 1998, vol. 48, pp. 821–828.PubMedCrossRefGoogle Scholar
  26. 26.
    Nolla-Ardèvol, V., Strous, M., Sorokin, D.Y., Merkel, A.Y., and Tegetmeyer, H.E., Activity and diversity of haloalkaliphilic methanogens in Central Asian soda lakes, J. Biotechnol., 2012, vol. 161, pp. 167–173.PubMedCrossRefGoogle Scholar
  27. 27.
    Surakasi, A., Wani, Y., Shouche, D., and Ranade, D., Phylogenetic analysis of methanogenic enrichment cultures obtained from Lonar Lake in India: isolation of Methanocalculus sp. and Methanoculleus sp., Microb. Ecol., 2007, vol. 54, p. 697–704.PubMedCrossRefGoogle Scholar
  28. 28.
    Liu, Y. and Whitman, W.B., Metabolic, phylogenetic and ecological diversity of the methanogenic archaea, Ann. N.Y. Acad. Sci., 2008, vol. 1125, pp. 171–189.PubMedCrossRefGoogle Scholar
  29. 29.
    Sakai, S., Ehara, M., Tseng, I.-C., Yamaguchi, T., Brauer, S.L., Cadillo-Quiroz, H., Zinder, S.H., and Imachi, H., Methanolinea mesophila sp. nov., a hydrogenotrophic methanogen isolated from rice field soil, and proposal of the archaeal family Methanoregulaceae fam. nov. within the order Methanomicrobiales, Int. J. Syst. Evol. Microbiol., 2012, vol. 62, pp. 1389–1395.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • T. N. Zhilina
    • 1
  • D. G. Zavarzina
    • 1
  • V. V. Kevbrin
    • 1
  • T. V. Kolganova
    • 2
  1. 1.Winogradsky Institute of MicrobiologyRussian Academy of SciencesMoscowRussia
  2. 2.Bioengineering CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations