Skip to main content
Log in

Oxidation of gold-antimony ores by a thermoacidophilic microbial consortium

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Antimony leaching from sulfide ore samples by an experimental consortium of thermoacidophilic microorganisms, including Sulfobacillus, Leptospirillum, and Ferroplasma strains was studied. The ores differed significantly in the content of the major metal sulfides (%): SbS, 0.84 to 29.95; FeS, 0.47 to 2.5, and AsS, 0.01 to 0.4. Independent of the SbS concentration in the experimental sample, after adaptation to a specific ore and pulp compaction, the microorganisms grew actively and leached/oxidized all gold-antimony ores at 39 ± 1°C. The lower was the content of iron and arsenic sulfides, the higher was antimony leaching. For the first time the investigations conducted with the use of X-ray microanalysis made it possible to conclude that, in a natural high-antimony ore, Sb inhibits growth of only a part of the cell population and that Ca, Fe, and Sb may compete for the binding centers of the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fillela, M., Williams, P.A., and Belzile, N., Antimony in the environment: knowns and unknowns, Environm. Chem., 2009, vol. 6, pp. 95–105.

    Article  Google Scholar 

  2. Wilson, C.W., Lockwood, P.V., Ashley, P.M., and Tighe, M., The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review, Environm. Pollution, 2010, vol. 158, pp. 1169–1181.

    Article  CAS  Google Scholar 

  3. Solozhenkin, P.M., Selective flotation of biologically modified minerals and biological flotation reagents, Proc. 4th Moscow Int. Congr. “Biotekhnologiya: sostoyanie i perspektivy razvitiya” (Biotechnology: Current State and Prospects), Moscow: Ekspobiokhimtekhnologii, 2007, Pt 2, p. 331.

    Google Scholar 

  4. Volesky, B. and Mayphillips, H.A., Biosorption of heavy metals by Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 1995, vol. 42, pp. 797–806.

    Article  CAS  PubMed  Google Scholar 

  5. MacCordick, J., Cellular adsorption of antimony(III) by Mycobacterium smegmatis, C.R. Acad. Sci. III, 1990, vol. 310, pp. 471–476.

    CAS  PubMed  Google Scholar 

  6. Scott, J.A. and Palmer, S.J., Cadmium biosorption by exopolysaccharide, Biotechnol. Lett., 1988, vol. 10, pp. 21–24.

    Article  CAS  Google Scholar 

  7. Silverman, M.P. and Lündgren, D.C., Study on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. An improved medium and harvesting procedure for securing high cell yield, J. Bacteriol., 1959, vol. 77, no. 5, pp. 642–647.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Tsaplina, I.A., Bogdanova, T.I., Kondrat’eva, T.F., Melamud, V.S., Lysenko, A.M., and Karavaiko, G.I., Genotypic and phenotypic polymorphism of environmental strains of the moderately thermophilic bacterium Sulfobacillus sibiricus, Microbiology (Moscow), 2008, vol. 77, no 2, pp. 151–158.

    Article  CAS  Google Scholar 

  9. Bogdanova, T.I., Tsaplina, I.A., Kondrat’eva, T.F., Duda, V.I., Suzina, N.E., Melamud, V.S., Tourova, T.P., and Karavaiko, G.I., Sulfobacillus thermotolerans sp. nov., a thermotolerant, chemolithotrophic bacterium, Int. J. Syst. Evol. Microbiol., 2006, vol. 56, pp. 1039–1042.

    Article  CAS  PubMed  Google Scholar 

  10. Melamud, V.S., Pivovarova, T.A., Tourova, T.P., Kolganova, T.V., Osipov, G.A., Lysenko, A.M., Kondrat’eva, T.F., and Karavaiko, G.I., Sulfobacillus sibiricus sp. nov., a new moderately thermophilic bacterium, Microbiology (Moscow), 2003, vol. 72, no 5, pp. 605–612.

    Article  CAS  Google Scholar 

  11. Brierley, J.A. and Lockwood, S.J., The occurrence of thermophilic iron-oxidizing bacteria in copper leaching system, FEMS Microbiol. Lett., 1977, vol. 2, pp. 163–165.

    Article  CAS  Google Scholar 

  12. Reynolds, E.S., The use of lead citrate at high pH as an electron-opaque stain in electron microscopy, J. Cell Biol., 1963, vol. 17, pp. 208–213.

    Article  CAS  PubMed  Google Scholar 

  13. Reznikov, A.A., Mulikovskaya, E.P., and Sokolov, I.Yu., Metody analiza prirodnykh vod (Methods for Analysis of Natural Waters), Moscow: Nedra, 1970.

    Google Scholar 

  14. Kolmert, A., Wikström, P., and Hallberg, K.B., A fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures, J. Microbiol. Methods, 2000, vol. 41, pp. 179–184.

    Article  CAS  PubMed  Google Scholar 

  15. Suvorovskaya, I.A., Titov, V.I., Brodskaya, V.M., Vasil’ev, P.I., Lipshchits, B.M., and Elentur, M.P., Determination of arsenic, in Tekhnicheskii analiz tsvetnoi metallurgii (Technical Analysis in Nonferrous Metallurgy), Moscow: Metallurg. Izdat., 1957, pp. 182–184.

    Google Scholar 

  16. Solozhenkin, P.M. and Nebera, V.P., Biohydrometallurgy of antimony gold-bearing ores and concentrations, 15th Int. Biohydromet. Symp., 2003, Pt 1, pp. 107–116.

    Google Scholar 

  17. Korenevskii, A.A., Patterns of metal sorption by microorganisms, Cand. Sci. (Biol.) Dissertation, Moscow, 1997.

    Google Scholar 

  18. Bayer, M.H., Lanthanide accumulation in the periplasmatic space of Escherichia coli, J. Bacteriol., 1991, vol. 173, pp. 141–149.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Doyle, R.J., How cell walls of gram-positive bacteria interact with metal ions, in Metal Ions and Bacteria, Beveridge, T.G. and Doyle, R.J., Eds., New York: Wiley, 1989, pp. 275–293.

    Google Scholar 

  20. Wood, J.M. and Wang, H.-K., Microbial resistance to heavy metals, Environ. Sci. Technol., 1983, pp. 582–590.

    Google Scholar 

  21. Mahapatra, N.R., Ghosh, S., Deb, C., and Banerjee, P.C., Resistance to cadmium and zinc in Acidiphilum symbioticum KM2 is plasmid mediated, Curr. Microbiol., 2002, vol. 45, pp. 180–186.

    Article  CAS  PubMed  Google Scholar 

  22. Ghosh, S., Mahapatra, N.R., Nandi, S., and Banerjee, P.C., Integration of metal-resistant determinants from the plasmid of an Acidocella strain into chromosome of Escherichia coli DH5α, Curr. Microbiol., 2005, vol. 50, pp. 28–32.

    Article  CAS  PubMed  Google Scholar 

  23. Kondrat’eva, T.F., Muntyan, L.N., and Karavaiko, G.I., Zinc and arsenic-resistant strains of Thiobacillus ferrooxidans have increased copy numbers of chromosomal resistance genes, Microbiology (UK), 1995, vol. 141, pp. 1157–1162.

    Article  Google Scholar 

  24. Coram, N.J., Zyl, L.J., and Rawlings, D.E., Occurrence of plasmids in the leptospirilli and a comparison of two plasmids from the biomining bacterium, Leptospirillum ferrooxidans ATCC 49879, in Proc. 16th Int. Biohydrometallurgy Symp., Harrison, S.T.L., Raw-lings, D.E., and Petersen, J., Eds., Cape Town: Compress, 2005, pp. 797–804.

    Google Scholar 

  25. Tsezos, M., Recovery of metals by biosorption: fundamental and technology developments, in Biohydrometallurgy. Proc. Int. Sem., Karavaiko, G.I., Rossi, G., and Avakyan, Z.A., Eds., 1990, pp. 44–57.

    Google Scholar 

  26. Tighe, M. and Lockwood, P., The importance of noncrystalline hydroxide phases in sequential extractions to fractionate antimony in acid soils, Comm. Soil Sci. Plant Anal., 2007, vol. 38, pp. 1487–1501.

    Article  CAS  Google Scholar 

  27. Leuz, A.-K., Hug, S.J., Wehrili, B., and Johnson, C.A., Sorption of Sb(III) and Sb(V) to goethite: influence on Sb(III) oxidation and mobilization, Environ. Sci. Technol., 2006, vol. 40, pp. 7277–7282.

    Article  CAS  PubMed  Google Scholar 

  28. Nies, D.H., Microbial heavy-metal resistance, Appl. Microbiol. Biotechnol., 1999, vol. 51, pp. 730–750.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Tsaplina.

Additional information

Original Russian Text © I.A. Tsaplina, V.V. Sorokin, A.E. Zhuravleva, V.S. Melamud, T.I. Bogdanova, T.F. Kondrat’eva, 2013, published in Mikrobiologiya, 2013, Vol. 82, No. 6, pp. 660–671.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsaplina, I.A., Sorokin, V.V., Zhuravleva, A.E. et al. Oxidation of gold-antimony ores by a thermoacidophilic microbial consortium. Microbiology 82, 680–689 (2013). https://doi.org/10.1134/S0026261713060118

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261713060118

Keywords

Navigation