Skip to main content
Log in

Detection of anaerobic processes and microorganisms in immobilized activated sludge of a wastewater treatment plant with intense aeration

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Attached activated sludge from the Krasnaya Polyana (Sochi) wastewater treatment plant was studied after the reconstruction by increased aeration and water recycle, as well as by the installation of a bristle carrier for activated sludge immobilization. The activated sludge biofilms developing under conditions of intense aeration were shown to contain both aerobic and anaerobic microorganisms. Activity of a strictly anaerobic methanogenic community was revealed, which degraded organic compounds to methane, further oxidized by aerobic methanotrophs. Volatile fatty acids, the intermediates of anaerobic degradation of complex organic compounds, were used by both aerobic and anaerobic microorganisms. Anaerobic oxidation of ammonium with nitrite (anammox) and the presence of obligate anammox bacteria were revealed in attached activated sludge biofilms. Simultaneous aerobic and anaerobic degradation of organic contaminants by attached activated sludge provides for high rates of water treatment, stability of the activated sludge under variable environmental conditions, and decreased excess sludge formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mishukov, B.G., Biological removal of nitrogen and phosphorus from urban sewage water, Voda Ekol.: Probl. Reshen., 2004, no. 3, pp. 31–33.

    Google Scholar 

  2. Yan, Y.G. and Tay, J.H., Characterization of the granulation process during UASB start-up, Water Res., 1997, vol. 31, no. 7, pp. 1573–1580.

    Article  CAS  Google Scholar 

  3. Zita, A. and Hermansson, M., Effects of bacterial cell surface structures and hydrophobicity on attachment to activated sludge flocs, Appl. Environ. Microbiol., 1997, vol. 63, no. 3, pp. 1168–1170.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Sirotkin, A.S., Shaginurova, G.I., and Ippolitov, K.G., Agregatsiya mikroorganizmov: flokuly, bioplenki, mikrobnye granuly (Microbial Aggregation: Floccules, Biofilms, and Microbial Granules), AN RT: FEN, 2007.

    Google Scholar 

  5. Nikolaev, Yu.A. and Plakunov, V.K., Biofilm-“city of microbes” or an analogue of multicellular organisms?, Microbiology (Moscow), 2007, vol. 76, no. 2, pp. 125–138.

    Article  CAS  Google Scholar 

  6. Plakunov, V.K. and Nikolaev, Yu.A., Microbial biofilms: prospects for wastewater treatment, Voda: Khim. Ekol., 2008, no. 2, pp. 11–13.

    Google Scholar 

  7. Tay, J.H., Ivanov, V., Pan, S., and Tay, S.T.L., Specific layers in aerobically grown microbial granules, Lett. Appl. Microbiol., 2002, vol. 34, pp. 254–257.

    Article  CAS  PubMed  Google Scholar 

  8. Yu, T., Lu, R., and Bishop, P.L., Microelectrodes as novel research tools for environmental biofilm studies, in Proc. CSCE/ASCE Joint Conf. Environ. Engineer.: An International Perspective on Environmental Engineering, Niagara Falls, 2002.

    Google Scholar 

  9. Gujer, W. and Zehnder, A.J.B., Conversion processes in anaerobic digestion, Water Sci. Tech., 1983, vol. 15, pp. 127–167.

    CAS  Google Scholar 

  10. Zavarzin, G.A., Trophic relations in a methanogenic community, Izv. AN. SSSR, Ser. Biol., 1986, vol. 3, pp. 341–360.

    Google Scholar 

  11. Mah, R.A., Ward, D.M., Baresi, L., and Glass, T.L., Biogenesis of methane, Annu. Rev. Microbiol., 1977, vol. 31, pp. 309–341.

    Article  CAS  PubMed  Google Scholar 

  12. Zehnder A.J.B., Stumm W., Geochemisty and biogeochemistry of anaerobic habitats, in Biology of Anaerobic Microorganisms, Zehnder, A.J.B., Ed., New York: Wiley, 1988, pp. 1–38.

    Google Scholar 

  13. Huser, B.A., Wuhrmann, K., and Zehnder, A.J.B., Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium, Arch. Microbiol., 1982, vol. 132, pp. 1–9.

    Article  CAS  Google Scholar 

  14. Lens, P.N., De Poorter, M.-P., Cronenberg, C.C., and Verstraete, W.H., Sulfate reducing and methane producing bacteria in aerobic wastewater treatment, Water Res., 1995, vol. 29, no. 3, pp. 871–880.

    Article  CAS  Google Scholar 

  15. Nozhevnikova, A.N., Litti, Yu.V., Nekrasova, V.K., Kulichevskaya, I.S., Grigor’eva, N.V., Kulikiov, N.I., and Zubov, M.G., Anaerobic ammonium oxidation (anammox) in immobilized activated sludge biofilms during the treatment of weak wastewater, Microbiology (Moscow), 2012, vol. 81, no. 1, pp. 25–34.

    Article  CAS  Google Scholar 

  16. Kulikov, N.I., Kulikova, E.N., and Kochetkov, A.Yu., RF Patent no. 2264252, 2003.

  17. Zhilina, T.N. and Zavarzin, G.A., Methods for isolation and cultivation of methanogenic bacteria, in Teoreticheskie i metodicheskie osnovy izucheniya anaerobnykh mikroorganizmov (Theoretical and Methodical Basics for Investigation of Anaerobic Microorganisms), Pushchino: AN SSSR, 1978, pp. 158–163.

    Google Scholar 

  18. Orlov, D.S. and Grishina, L.A., Praktikum po khimii gumusa (Prcatical Course in Humus Chemistry), Moscow: Mos. Gos. Univ., 1981.

    Google Scholar 

  19. Stahl, D.A. and Amann, R., Development and application of nucleic acid probes, in Nucleic Acid Techniques in Bacterial Systematic, Stackebrandt, E. and Goodfellow, M., Eds., New York: Wiley, 1991, pp. 205–248.

    Google Scholar 

  20. Amann, R.I., Krumholz, L., and Stahl, D.A., Fluorescent oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology, J. Bacteriol., 1990, vol. 172, pp. 762–770.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Amann, R.I., Ludwig, W., and Schleifer, K.H., Phylogenetic identification and in situ detection of individual microbial cells without cultivation, Microbiol. Rev., 1995, vol. 59, pp. 143–169.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Neef, A., Amann, R., Schlesner, H., and Schleifer, K.-H., Monitoring a widespread bacterial group: in situ detection of planctomycetes with 16S rRNA-targeted probes, Microbiology (UK), 1998, vol. 144, pp. 3257–3266.

    Article  CAS  Google Scholar 

  23. Schmid, M., Walsh, K., Webb, R.I., Rijpstra, W.I.C., van de Pas-Schoonen, K.T., Verbruggen, M.J., Hill, T., Moffert, B., Fuerst, J.A., Schouten, S., Sinninghe Damste, J.S., Harris, J., Shaw, P., Jetten, M.S.M., and Strous, M., Candidatus “Scalindua brodae,” sp. nov., Candidatus “Scalindua wagneri,” sp. nov., two new species of anaerobic ammonium oxidizing bacteria, Syst. Appl. Microbiol., 2003, vol. 26, pp. 529–541.

    Article  CAS  PubMed  Google Scholar 

  24. Di Iaconi, C., Del Moro, G., Lopez, A., and Ramadori, R., The essential role of filling material in aerobic granular biomass generation in a periodic submerged biofilter, World Rev. Sci., Technol. Sustain. Devel., 2009, vol. 6, pp. 144–155.

    Article  Google Scholar 

  25. Nozhevnikova, A.N., Nekrasova, V., Ammann, A., Zehnder, A.J.B., Wehrli, B., and Holliger, C., Temperature dependence of methanogenesis pathway in lake sediment slurries, FEMS Microbiol. Ecol., 2007, vol. 62, pp. 336–344.

    Article  CAS  PubMed  Google Scholar 

  26. Zavarzin, G.A., Biogas and small-scale energetics, Priroda (Moscow), 1987, no. 1, pp. 66–79.

    Google Scholar 

  27. Stams, A.J.M., Metabolic interactions between anaerobic bacteria in methanogenic environments, Antonie van Leeuwenhoek, vol. 66, pp. 271–294.

  28. Zehnder, A.J.B. and Brock, T.D., Anaerobic methane oxidation: occurence and ecology, Appl. Environ. Microbiol., 1980, vol. 39, no. 1, pp. 194–204.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Nozhevnikova.

Additional information

Original Russian Text © Yu.V. Litti, V.K. Nekrasova, N.I. Kulikov, M.V. Siman’kova, A.N. Nozhevnikova, 2013, published in Mikrobiologiya, 2013, Vol. 82, No. 6, pp. 672–680.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litti, Y.V., Nekrasova, V.K., Kulikov, N.I. et al. Detection of anaerobic processes and microorganisms in immobilized activated sludge of a wastewater treatment plant with intense aeration. Microbiology 82, 690–697 (2013). https://doi.org/10.1134/S0026261713060076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261713060076

Keywords

Navigation