Skip to main content
Log in

Effect of sodium chloride concentration in the medium on the composition of the membrane lipids and carbohydrates in the cytosol of the fungus Fusarium sp.

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The fungus Fusarium sp. isolated from saline soil was identified by the ITS1-5.8S-ITS2 and the D1/D2 domains of LSU RNA as a member of the Fusarium incarnatum-equiseti species group. Its growth patterns on media with different NaCl concentrations indicated its adaptation as halotolerance. The mechanisms of halotolerance included accumulation of arabitol (a five-atom noncyclic polyol), a decreased sterols/phospholipids ratio, elevated level of phosphatidic acids in the phospholipids, and increased unsaturation of phospholipids, which was especially pronounced in the idiophase. The mechanisms of halotolerance of the mycelial fungus Fusarium sp. are discussed in comparison with yeasts and yeastlike fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gunde-Cimerman, N., Ramos, J., and Plemenitaš, A., Halotolerant and halophilic fungi, Mycol. Res., 2009, vol. 11, no. 113, pp. 1231–1241.

    Article  Google Scholar 

  2. Smolyanuk, E.V. and Bilanenko, E.N., Communities of halotolerant micromycetes from the areas of natural salinity, Microbiology (Moscow), 2011, vol. 80, no. 6, pp. 877–883.

    Article  Google Scholar 

  3. Ruibal, C., Gueidan, C., Selbmann, L., Gorbushina, A.A., Crous, P.W., Groenewald, J.Z., Muggia, L., Grube, M., Isola, D., Schoch, C.L., Staley, J.T., Lutzoni, F., and de Hoog, G.S., Phylogeny of rock-inhabiting fungi related to Dothideomycetes, Stud. Mycol., 2009, no. 64, pp. 123–133.

    Google Scholar 

  4. Hazel, J.R. and Williams, E.E., The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment, Prog. Lipid Res., 1990, vol. 29, pp. 167–227.

    Article  PubMed  CAS  Google Scholar 

  5. Hohman, S., Osmotic stress signaling and osmoadaptation in yeast, Microbiol. Mol. Biol. Rev., 2002, vol. 66, no. 2, pp. 300–372.

    Article  Google Scholar 

  6. Turk, M., Mejanelle, L., Šentjire, M., Grimalt, J.O., Gunde-Cimerman, N., and Plemenitaš, A., Saltinduced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi, Extremophiles, 2004, vol. 8, pp. 53–61.

    Article  PubMed  CAS  Google Scholar 

  7. Jennings, D.H. and Burke, R.M., Compatible solutes—the mycological dimension and their role as physiological buffering agents, New Phytol., 1990, no. 116, pp. 277–283.

    Google Scholar 

  8. Feofilova, E.P., Deceleration of vital activity as a universal biochemical mechanism ensuring adaptation of microorganisms to stress factors: a review, Applied Biochemistry and Microbiology, 2003, vol. 39, no. 1, pp. 1–18.

    Article  CAS  Google Scholar 

  9. Magan, N., Fungi in extreme environments, in The Mycota IV, Environmental and Microbial Relationships, Kubicek, C.P. and Druzhinina, I.S., Eds., Berlin: Springer, 2007, pp. 85–103.

    Google Scholar 

  10. Kogej, T., Ramos, J., Plemenitaš, A., and Gunde-Cimerman, N., The halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments, Appl. Environ. Microbiol., 2005, vol. 71, pp. 6600–6605.

    Article  PubMed  CAS  Google Scholar 

  11. Mandeel, Q.A., Biodiversity of the genus Fusarium in saline soil habitats, J. Basic Microbiol., 2006, vol. 46, no. 6, pp. 480–494.

    Article  PubMed  Google Scholar 

  12. Kachalkin, A.V., New data on the distribution of certain psychrophilic yeasts in Moscow oblast, Microbiology (Moscow), 2010, vol. 79, no. 6, pp. 840–844.

    Article  CAS  Google Scholar 

  13. Vasilyeva, A.A., Chekunova, L.N., Bilanenko, E.N., Kachalkin, A.V., and Polyakova, A.V., Characterization of the strain Monascus floridanus P.F. Cannon & E.L. Barnard, isolated from aviation fuel, Microbiology (Moscow), 2012, vol. 81, no. 2, pp. 244–250.

    Article  CAS  Google Scholar 

  14. Watanabe, M., Yonezawa, T., Lee, K., Kumagai, S., Sugita-Konishi, Y., Goto, K., and Hara-Kudo, Y., Molecular phylogeny of the higher and lower taxonomy of the Fusarium genus and differences in the evolutionary histories of multiple genes, BMC Evol. Biol., 2011. doi: 10.1186/1471-2148-11-322

    Google Scholar 

  15. Katoh, K., Asimenos, G., and Toh, H., Multiple alignment of DNA sequences with MAFFT, Meth. Mol. Biol., 2009, vol. 537, pp. 39–64.

    Article  CAS  Google Scholar 

  16. Tamura, K., Dudley, J., Nei, M., and Kumar, S., MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0, Mol. Biol. Evol., 2007, vol. 24, pp. 1596–1599.

    Article  PubMed  CAS  Google Scholar 

  17. Nichols, B.W., Separation of the lipids of photosynthetic tissues; improvement in analysis by thin-layer chromatography, Biochem. Biophys. Acta, 1963, vol. 4145, pp. 417–422.

    Article  Google Scholar 

  18. Keits, M., Techniques of Lipidology: Isolation, Analysis, and Identification of Lipids, Amsterdam: Elsevier, 1972.

    Google Scholar 

  19. Benning, C., Huang, Z-H., and Gage, D.A., Accumulation of a novel glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation, Arch. Biochem. Biophys., 1995, vol. 317, no. 1, pp. 103–111.

    Article  PubMed  CAS  Google Scholar 

  20. Somogui, M., Determination of blood sugar, J. Biol. Chem., 1945, vol. 160, p. 69.

    Google Scholar 

  21. Brobst, K.M., Gas-liquid chromatography of trimethylsilyl sugar derivatives, in Methods in Carbohydrate Chemistry, Whistler, R.L. and BeMiller, J.N., Eds., New York: Academic, 1972, vol. 6, pp. 3–8.

    Google Scholar 

  22. Grant, W.D., Life at low water activity, Phil. Trans. R. Soc. Lond. B, 2004, vol. 359, pp. 1249–1267.

    Article  CAS  Google Scholar 

  23. Zavarzin, G.A., Zhilina, T.N., and Kevbrin, V.V., The alcalophilic microbial community and its functional diversity, Microbiology, 1999, vol. 68, no. 5, pp. 503–521.

    CAS  Google Scholar 

  24. Balnokin, Yu.V., Plants under stress conditions, in Fiziologiya rastenii (Plant Physiology), Ermakov, I.P., Ed., Moscow: Akademiya, 2005, pp. 510–588.

    Google Scholar 

  25. Extremophiles, Rainey, F.A. and Oren, A., Eds., in Methods in Microbiology, vol. 35, Elsevier, 2006.

    Google Scholar 

  26. Brown, A.D., Compatible solutes and extreme water stress in eukaryotic micro-organisms, Adv. Microb. Physiol., 1978, vol. 17, no. 3, pp. 181–242.

    Article  PubMed  CAS  Google Scholar 

  27. Hottiger, T., De Virgilio, C., Hall, M.N., Boller, T., and Wiemken, A., The role of trehalose synthesis for the acquisition of thermothlerance in yeast: II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro, Eur. J. Biochem., 1994, vol. 219, pp. 187–193.

    Article  PubMed  CAS  Google Scholar 

  28. Davis, D.J., Burlak, C., and Money, N.P., Osmotic pressure of fungal compatible solutes, Mycol. Res., 2000, vol. 104, no. 7, pp. 800–804.

    Article  CAS  Google Scholar 

  29. Los, D.A. and Murata, N., Membrane fluidity and its roles in the perception of environmental signals, Biochim. Biophys. Acta, 2004, vol. 1666, pp. 142–157.

    Article  PubMed  CAS  Google Scholar 

  30. Tereshina, V.M. and Memorskaya, A.S., Adaptation of Flammulina velutipes to hypothermia in natural environments: The role of lipids and carbohydrates, Microbiology (Moscow), 2005, vol. 74, no. 3, pp. 279–283.

    Article  CAS  Google Scholar 

  31. Tereshina, V.M., Memorskaya, A.S., and Kotlova, E.R., The effect of different heat influences on composition of membrane lipids and cytosol carbohydrates in mycelial fungi, Microbiology, 2011, vol. 80, no. 4, pp. 455–460.

    Article  CAS  Google Scholar 

  32. Kooijman, E.E., Chupin, V., de Kruif, B., and Burger, N.J., Modulation of membrane cutvature by phosphatidic acid and lyso phosphatidic acid, Traffic, 2003, vol. 4, pp. 162–174.

    Article  PubMed  CAS  Google Scholar 

  33. McMahon, H.T. and Gallop, J.L., Membrane curvature and mechanisms of dynamic cell membrane remodeling, Nature, 2005, vol. 438, pp. 590–596.

    Article  PubMed  CAS  Google Scholar 

  34. Hosono, K., Effect of salt stress on lipid composition and membrane fluidity of the salt-tolerant yeast Zygosaccharomyces rouxii, J. Gen. Microbiol., 1992, vol. 138, pp. 91–96.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Kamzolkina.

Additional information

Original Russian Text © E.V. Smolyanyuk, E.N. Bilanenko, V.M. Tereshina, A.V. Kachalkin, O.V. Kamzolkina, 2013, published in Mikrobiologiya, 2013, Vol. 82, No. 5, pp. 595–604.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smolyanyuk, E.V., Bilanenko, E.N., Tereshina, V.M. et al. Effect of sodium chloride concentration in the medium on the composition of the membrane lipids and carbohydrates in the cytosol of the fungus Fusarium sp.. Microbiology 82, 600–608 (2013). https://doi.org/10.1134/S0026261713050111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261713050111

Keywords