Skip to main content
Log in

The ability of the rhizobacterium Azospirillum brasilense to reduce selenium(IV) to selenium(0)

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Effect of selenium(+4) as selenite (Se 2−3 ) on two Azospirillum brasilense strains, which occupy different ecological niches (an epiphyte Sp7 and a facultative endophyte Sp245), was studied. The cultures grown in the medium with sodium selenite exhibited intense red coloration. Transmission electron microscopy and X-ray fluorescence analysis revealed accumulation of elementary selenium within the cells of both strains as nanoparticles 50–400 nm in diameter. The ability to reduce inorganic selenium(+4) to elementary selenium (as nanoparticles) has not been previously reported for azospirilla. Our results indicate the possibility to apply Azospirillum strains as microsymbionts for phytoremediation of, and cereal cultivation on, selenium-contaminated soils. The ability of azospirilla to synthesize selenium nanoparticles may be of interest for nanobiotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Slobodkina, G.B., Bonch-Osmolovskaya, E.A., and Slobodkin, A.I., Reduction of chromate, selenite, tellurite, and iron (III) by the moderately thermophilic bacterium Bacillus thermoamylovorans SKC1, Microbiology, 2007, vol. 76, no. 5, pp. 530–534.

    Article  CAS  Google Scholar 

  2. Shapovalova, A.A., Khijniak, T.V., Tourova, T.P., and Sorokin, D.Yu., Halomonas chromatireducens sp. nov., a new denitrifying facultatively haloalkaliphilic bacterium from solonchak soil capable of aerobic chromate reduction, Microbiology, 2009, vol. 79, no. 1, pp. 102–111.

    Article  Google Scholar 

  3. Huber, R., Sacher, M., Vollmann, A., Huber, H., and Rose, D., Respiration of arsenate and selenate by hyperthermophilic archaea, Syst. Appl. Microbiol., 2000, vol. 23, no. 3, pp. 305–314.

    Article  PubMed  CAS  Google Scholar 

  4. Hunter, W.J. and Manter, D.K., Reduction of selenite to elemental red selenium by Pseudomonas sp. strain CA5, Curr. Microbiol., 2009, vol. 58, pp. 493–498.

    Article  PubMed  CAS  Google Scholar 

  5. Bashan, Y. and de-Bashan, L.E., How the plant growth-promoting bacterium Azospirilllum promotes plant growth — a critical assessment, Adv. Agron., 2010, vol. 107, pp. 77–136.

    Article  Google Scholar 

  6. Bashan, Y., Holguin, G., and de-Bashan, L.E., Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003), Can. J. Microbiol., 2004, vol. 50, no. 8, pp. 521–577.

    Article  PubMed  CAS  Google Scholar 

  7. Lucy, M., Reed, E., and Glick, B.R., Applications of free living plant growth-promoting rhizobacteria, Ant. Van Leeuwenhoek, 2004, vol. 86, no. 1, pp. 1–25.

    Article  CAS  Google Scholar 

  8. Kamnev, A.A., Tugarova, A.V., Antonyuk, L.P., Tarantilis, P.A., Kulikov, L.A., Perfiliev, Yu.D., Polissiou, M.G., and Gardiner, P.H.E., Instrumental analysis of bacterial cells using vibrational and emission Mössbauer spectroscopic techniques, Anal. Chim. Acta, 2006, vol. 573–574, pp. 445–452.

    Article  PubMed  Google Scholar 

  9. Kamnev, A.A., Tugarova, A.V., Tarantilis, P.A., Gardiner, P.H.E., and Polissiou, M.G., Comparing poly-3-hydroxybutyrate accumulation in Azospirillum brasilense strains Sp7 and Sp245: the effects of copper(II), Appl. Soil. Ecol., 2012, vol. 61, pp. 213–216 (doi: 10.1016/j/apsoil.2011.10.020).

    Article  Google Scholar 

  10. Day, J.M. and Döbereiner, J., Physiological aspects of N2-fixation by a Spirillum from Digitaria roots, Soil Biol. Biochem., 1976, vol. 8, no. 1, pp. 45–50.

    Article  CAS  Google Scholar 

  11. Roux, M., Sarret, G., Pignot-Paintrand, I., Fontecave, M., and Coves, J., Mobilization of selenite by Ralstonia metallidurans CH34, Appl. Environ. Microbiol., 2001, vol. 67, no. 2, pp. 769–773.

    Article  PubMed  CAS  Google Scholar 

  12. Sarret, G., Avoscan, L., Carrière, M., Collins, R., Geoffroy, N., Carrot, F., Covès, J., and Gouget, B., Chemical forms of selenium in the metal-resistant bacterium Ralstonia metallidurans CH34 exposed to selenite and selenate, Appl. Environ. Microbiol., 2005, vol. 7, no. 5, pp. 2331–2337.

    Article  Google Scholar 

  13. Kessi, J., Ramuz, M., Wehrli, E., Spycher, M., and Bachofen, R., Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum, Appl. Environ. Microbiol., 1999, vol. 65, pp. 4734–4740.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tugarova.

Additional information

Original Russian Text © A.V. Tugarova, E.P. Vetchinkina, E.A. Loshchinina, A.G. Shchelochkov, V.E. Nikitina, A.A. Kamnev, 2013, published in Mikrobiologiya, 2013, Vol. 82, No. 3, pp. 362–365.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tugarova, A.V., Vetchinkina, E.P., Loshchinina, E.A. et al. The ability of the rhizobacterium Azospirillum brasilense to reduce selenium(IV) to selenium(0). Microbiology 82, 352–355 (2013). https://doi.org/10.1134/S0026261713030120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261713030120

Keywords

Navigation