Skip to main content
Log in

Structural organization and phase behavior of phospholipid fractions of actinobacteria in relation to storage conditions

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

X-ray diffraction analysis provided information on structural organization, phase behavior, and stability of the major parameters of phospholipid fractions of the cell membranes of actinobacteria strains Streptomyces hygroscopicus RIA 1433, Nonomuraea roseoviolacea subsp. carminata INA 4281, and Nonomuraea sp. INA 34-06 depending on the storage conditions and hydration level. Phospholipids of S. hygroscopicus were shown to form densely packed multilamellar layers. The phospholipid fraction of this microorganism was notable for homogeneity and stability of its structural organization upon storage at 4°C during 10 months. On the contrary, lipids of the phospholipid fractions of N. roseoviolacea subsp. carminata INA 4281 and Nonomuraea sp. INA 34-06 formed lamellar and inverted hexagonal (HII) phases. The phase depended on hydration level and changed in the course of storage. We assume that the revealed differences in phase structural organization of actinobacterial phospholipid fractions may indicate long-term stability of their membrane structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Williams, W.P., Cold-induced lipid phase trasnsitions, Phil. Trans. R. Soc. Lond. B, 1990, vol. 326, pp. 555–570.

    Article  CAS  Google Scholar 

  2. Antonov, V.F., Evolution of lipid pores in a bilayer during pahse transitions of the membrane lipids, in Regulyarnaya i khaoticheskaya dinamika (Regulary and Chaotic Dynamics), Rubin, A.B., Ed., Moscow: NITs, 2006, pp. 82–103.

    Google Scholar 

  3. Williams, W.P. and Quinn, P.J., The Phase behavior of lipids in photosynthetic membranes, J. Bioenerg. Biomembr., 1987, vol. 19, no. 6, pp. 691–703.

    Article  Google Scholar 

  4. Lafleur, M., Bloom, M., and Cullis, P.R., Lipid polymorphism and hydrocarbon order, Biochem. Cell Biol., 1990, vol. 68, pp. 1–8.

    Article  PubMed  CAS  Google Scholar 

  5. Morein, S., Andersson, A.-S., Rilforst, L., and Lindblom, G., Wild-type Escherichia coli cells regulate the membrane lipid composition in a “window” between gel and non-lamellar structures, J. Biol. Chem., 1996, vol. 271, no. 12, pp. 6801–6809.

    Article  PubMed  CAS  Google Scholar 

  6. Niemi, A.E., Andersson, A.-S., Riifors, L., Lindblom, G., and Arvidson, G., The effects of hydration and divalent cations on lamellar-nonlamellar phase transitions in membranes and total lipid extracts from Acholeplasma laidawii A-EF22—a 2H NMR study, Eur. Biophys. J., 1997, vol. 26, pp. 485–493.

    Article  CAS  Google Scholar 

  7. Goldfine, H., Johnston, N.C., Mattal, J., and Shipley, G.G., Regulation of bilayer stability in Clostridium butyricum: studies on the polymorphic phase behavior on the ether lipids, Biochemistry, 1987, vol. 26, pp. 2814–2822.

    Article  PubMed  CAS  Google Scholar 

  8. Mariani, P., Rivas, E., Luzzati, V., and Delacroix, H., Polymorphism of a lipid extract from Pseudomonas fluorescens: structure analysis of a hexagonal phase and of a novel cubic phase of extinction symbol Fd, Biochemistry, 1990, vol. 29, pp. 6799–6810.

    Article  PubMed  CAS  Google Scholar 

  9. Gulik, A., Luzzati, V., De Rosa, M., and Gambacorta, A., Structure and polymorphism of bipolar isopranyl ether lipids from Archaebacteria, J. Mol. Biol., 1985, vol. 182, pp. 131–149.

    Article  PubMed  CAS  Google Scholar 

  10. Belous, A.M., Bondarenko, T.P., and Bondarenko, V.A., Molecular mechanisms of cryodamage to the membrane structures, in Kriobiologiya i kriomeditsina (Kryobiology and Kryomedicine), Kiev: Naukova Dumka, 1979, no. 5, pp. 3–13.

    Google Scholar 

  11. Popova, A.V. and Hincha, K., Thermotropic phase behavior and headgroup interactions of the nonbilayer lipids phosphatidylethanolamine and monogalactosyldiacylglycerol in the dry state, BMC Biophys., 2011, 4:11. doi: 10.1186/2046-1682-4-11

    Article  PubMed  CAS  Google Scholar 

  12. Nichols, D.S., Olley, J., Garda, H., Brenner, R.R., and McMeekin, T.A., Effect of Temperature and salinity stress on growth and lipid composition of Shewanella gelidimarina, Appl. Environ. Microbiol., 2000, vol. 66, no. 6, pp. 2422–2429.

    Article  PubMed  CAS  Google Scholar 

  13. Lindblom, G. and Rilfors, L., Nonlamellar phases formed by membrane lipids, Adv. Colloid Interface, 1992, vol. 41, pp. 101–125.

    Article  CAS  Google Scholar 

  14. Sutton, G.C., Russell, N.J., and Quinn, P.J., The effect of salinity on the phase behaviour of total lipid extracts and binary mixtures of the major phospholipids isolated from a moderately halophilic eubacterium, Biochim. Biophys. Acta., 1991, vol. 1061, no. 2, pp. 235–246.

    Article  PubMed  CAS  Google Scholar 

  15. Luzzati, V. and Husson, F., The structure of the liquidcrystalline phases of lipid-water systems, J. Cell Biol., 1962, vol. 12, pp. 207–219.

    Article  PubMed  CAS  Google Scholar 

  16. Kiselev, M.A., Ermakova, E.V., Filippova, S.N., Surgucheva, N.A., Dante, S., Hauss, Th., and Galchenko, V.F., Structural organization of the phospholipids component of Streptomyces hygroscopicus cell membranes as determined from neutron diffraction data, Biophysics, 2009, vol. 54, no. 4, pp. 471–475.

    Article  Google Scholar 

  17. Kuznetsov, V.D., Variability of actinomycetes producing antibiotics and other biologically active substances, Antibiotiki, 1972, vol. 17, no. 7, pp. 666–671.

    PubMed  CAS  Google Scholar 

  18. Waksman, S., The Actinomycetes. Classification, Identification and Descriptions of Genera and Species, vol. 2, Baltimore: Williams and Wilkins, 1961.

    Google Scholar 

  19. Pechatnikova, I.Sh., Efimova, T.P., and Tereshin, I.M., Production of protoplasts and membranes in Actinomyces hygroscopicus, Microbiology, 1976, vol. 45, no. 5, pp. 859–863.

    CAS  Google Scholar 

  20. O’Donnell, A.G., Minnikin, D.E., and Goodfellow M., Integrated lipid and wall analysis of actinomycetes, in Chemical Methods in Bacterial Systematics, Goodfellow, M. and Minnikin, D.E., Eds., London: Academic, 1985, pp. 131–143.

    Google Scholar 

  21. Kiselev, M.A., Ermakova, E.V., Ryabova, N.Yu., Nayda, O.V., Zabelin, A.V., Pogorely, D.K., Korneev, V.N., and Balagurov, A.M., Structural studies of the lipid membranes at the Siberia-2 synchrotron radiation source, Crystallogr. Rep., 2010, vol. 55, no. 3, pp. 466–472.

    Article  CAS  Google Scholar 

  22. Kiselev, M.A., Methods for lipid nanostructure investigation at neutron and synchrotron sources, Phys. Part. Nucl., 2011, vol. 42, no. 2, pp. 302–331.

    Article  Google Scholar 

  23. Efimova, T.P., Pechatnikova, I.Sh., and Tereshin, I.M., Membrane composition in Actinomyces hygroscopicus in the course of growth and development, Mikrobiologiya, 1977, vol. 46, no. 4, pp. 676–682.

    CAS  Google Scholar 

  24. Hoischen, Ch., Gura, K., Luge, C., and Gumpert, J., Lipid and fatty acid composition of cytoplasmic membranes from Streptomyces hygroscopicus and its stable protoplast—type L form, J. Bacteriol., 1997, vol. 179, no. 11, pp. 3430–3436.

    PubMed  CAS  Google Scholar 

  25. Mouritsen, O.G., Life—As a Matter of Fat. The Emerging Science of Lipidomics, Berlin: Springer, 2005.

    Google Scholar 

  26. Ryabova, N.Yu., Kiselev, M.A., Beskrovnyi, A.I., and Balagurov, A.M., Investigation of the structure of multilayer lipid membranes by real-time neutron diffraction, Phys. Solid State, 2010, vol. 52, no. 5, pp. 1050–1058.

    Article  CAS  Google Scholar 

  27. Bekker, M.E., Anabiosis as a natural phenomenon, in Tormozhenie zhiznedeyatel’nosti kletok (Suppression of Cell Activity), Bekker, M.E, Ed., Riga: “Zinatne”, 1987, pp. 9–19.

    Google Scholar 

  28. Ipatova, O.M., Role of phospholipids in the processes of cell damage, in Fosfogliv: mekhanizm deistviya i primenenie v klinike (Phosphogliv: Action Mechanism and Clinical Application), Moscow, 2005, pp. 115–164.

    Google Scholar 

  29. Filippova, S.N., Surgucheva, N.A., and Gal’chenko, V.F., Long-term storage of collection cultures of Actinobacteria, Microbiology, 2012, vol. 81, no. 5, pp. 630–637.

    Article  CAS  Google Scholar 

  30. Chudinova, V.V., Zakharova, E.I., Alekseeva, S.M., Chupin, V.V., and Evstigneeva, R.P., Investigation of the interaction of α-tocopherol with phospholipids, fatty acids, and their oxygenated derivatives by 31P-NMR spectroscopy, Bioorg. Khim., 1993, vol. 19, no. 2, pp. 243–249.

    PubMed  CAS  Google Scholar 

  31. Bragina, N.A. and Mironov, A.F., Membranologiya (Membranology), Moscow: MITKhT 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Filippova.

Additional information

Original Russian Text © S.N. Filippova, N.A. Surgucheva, E.V. Ermakova, M.A. Kiselev, L.P. Terekhova, O.N. Sineva, O.A. Galatenko, A.V. Zabelin, V.F. Gal’chenko, 2013, published in Mikrobiologiya, 2013, Vol. 82, No. 3, pp. 335–343.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippova, S.N., Surgucheva, N.A., Ermakova, E.V. et al. Structural organization and phase behavior of phospholipid fractions of actinobacteria in relation to storage conditions. Microbiology 82, 327–334 (2013). https://doi.org/10.1134/S002626171303003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002626171303003X

Keywords

Navigation