Skip to main content

Advertisement

Log in

Influence of soil pollution on the composition of a microbial community

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The abundance dynamics and composition of indigenous soil microbial communities were studied in soils polluted with naphthalene, dioctyl phthalate, diesel fuel, and crude oil. DGGE analysis of the 16S rRNA genes amplified from the total soil DNA revealed that the bacterial community of uncontaminated soil was more diverse and included no dominant species. In the soil samples polluted with the crude oil, diesel fuel, or dioctyl phthalate, Pseudomonas became the dominant bacteria since the third day of the experiment. In the soil polluted with naphthalene, two genera of bacteria (Pseudomonas and Paenibacillus) were dominant in population on the third day of the experiment, while on the 21th day of the experiment Arthrobacter became dominant. During the experiment, the average number of indigenous bacterial degraders increased approximately by two orders of magnitude. While the key genes of naphthalene catabolism, nahAc and nahH, were not detected in the pristine soil, they were found in a significant amount on the third day after naphthalene addition. Three degrader strains harboring the plasmids of naphthalene biodegradation (IncP-9 group) were isolated on the third day from the soil polluted with naphthalene. Two of these plasmids, although isolated from various degraders, were shown to be identical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Muyzer, G., De Waal, E.C., and Uitterlinden, A.G., Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes Coding for 16S rRNA, Appl. Environ. Microbiol., 1993, vol. 59, pp. 695–700.

    PubMed  CAS  Google Scholar 

  2. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual. 2nd ed., New York: Cold Spring Harbor Lab. Press, 1989.

    Google Scholar 

  3. Evans, W.C., Fernley, H.N., and Griffiths, E., Oxidative Metabolism of Phenantrene and Anthracene by Soil Pseudomonads: the Ring-Fission Mechanism, J. Biochem., 1965, vol. 95, pp. 819–831.

    CAS  Google Scholar 

  4. Dunn, N.W. and Gunsalus, I.C., Transmissible Plasmid Coding Early Enzymes of Naphthalene Oxidation in Pseudomonas putida, J. Bacteriol., 1973, vol. 114, pp. 974–979.

    PubMed  CAS  Google Scholar 

  5. Egorov, N.S., Rukovodstvo k prakticheskim zanyatiyam po mikrobiologii: uchebnoe posobie (Practical Manual in Microbiology), Moscow: Mosk. Gos. Univ., 1995.

    Google Scholar 

  6. Smalla, K., Wieland, G., Buchner, A., Zock, A., Parzy, J., Kaiser, S., Roskot, N., Heuer, H., and Berg, G., Bulk and Rhizosphere Soil Bacterial Communities Studied by Denaturing Gradient Gel Electrophoresis: Plant-Dependent Enrichment and Seasonal Shifts Revealed, Appl. Environ. Microbiol., 2001, vol. 67, pp. 4742–4751.

    Article  PubMed  CAS  Google Scholar 

  7. Weisburg, W.G., Barnes, S.M., Pelletier, D.A., and Lane, D.J., 16S Ribosomal DNA Amplification for Phylogenetic Study, J. Bacteriol., 1991, vol. 73, pp. 697–703.

    Google Scholar 

  8. Dombek, P.E., Johnson, L.K., Zimmerley, S.T., and Sadowsky, M.J., Use of Repetitive DNA Sequences and the PCR to Differentiate Escherichia coli Isolates from Human and Animal Sources, Appl. Environ. Microbiol., 2000, vol. 66, pp. 2572–2577.

    Article  PubMed  CAS  Google Scholar 

  9. Greated, A. and Thomas, C.M., A Pair of PCR Primers for IncP-9 Plasmids, Microbiology (UK), 1999, vol. 145, pp. 3003–3004.

    Google Scholar 

  10. Ferrero, M., Llobet-Brossa, E., Lalucat, J., Garcia-Valdes, E., Rosselo-Mora, R., and Bosch, R., Coexistence of Two Distinct Copies of Naphthalene Degradation Genes in Pseudomonas Strains Isolated from the Western Mediterranean Region, Appl. Environ. Microbiol., 2002, vol. 68, pp. 957–962.

    Article  PubMed  CAS  Google Scholar 

  11. Izmalkova, T.Yu., Mavrodi, D.V., Sokolov, S.L., Kosheleva, I.A., Smalla, K., Thomas, C.M., and Boronin, A.M., Molecular Classification of IncP-9 Naphthalene Degradation Plasmids, Plasmid, 2006, vol. 56, pp. 1–10.

    Article  PubMed  CAS  Google Scholar 

  12. Wilkstrom, P., Wiklund, A., Anderson, A.C., and Forsman, M., DNA Recovery and PCR Quantification of Catechol 2,3-Dioxygenase Genes from Different Soil Types, J. Biotechnol., 1996, vol. 52, pp. 107–120.

    Article  Google Scholar 

  13. Cremonesi, L., Firpo, S., Ferrari, M., Righetti, P.G., and Gelfi, C., Double-Gradient DGGE for Optimized Detection of DNA Point Mutations, BioTechniques, 1997, vol. 22, pp. 326–330.

    PubMed  CAS  Google Scholar 

  14. Heuer, H., Wieland, G., Schonfeld, J., Schonwalder, S., Gomes, N.C.M., and Smalla, K., Bacterial Community Profiling Using DGGE or TDGGE Analysis, in Environmental Molecular Microbiology: Protocols and Applications, Rouchelle, P., Ed., Wymondham: Horizon Sci., 2001, pp. 177–190.

    Google Scholar 

  15. Molina, L., Ramos, C., Duque, E., Ronchel, M.C., Garcia, J.M., Wyke, L., and Ramos, J.L., Survival of Pseudomonas putida KT2440 in Soil and in the Rhizosphere of Plants Under Greenhouse and Environmental Conditions, Soil Biol. Biochem., 2000, vol. 32, pp. 315–321.

    Article  CAS  Google Scholar 

  16. Regenhardt, D., Heuer, H., Heim, S., Fernandez, D.U., Strömpl, C., Moore, E.R.B., and Timmis, K.N., Pedigree and Taxonomic Credentials of Pseudomonas putida Strain KT2440, Environ. Microbiol., 2002, no. 4, pp. 912–915.

    Google Scholar 

  17. Del Panno, M.T., Morelli, I.S., Engelen, B., and Berthe-Corti, L., Effect of Petrochemical Sludge Concentrations on Microbial Communities during Soil Bioremediation, FEMS Microbiol. Ecol., 2005, vol. 53, pp. 305–316.

    Article  PubMed  Google Scholar 

  18. Nyman, J.A., Effect of Crude Oil and Chemical Additives on Metabolic Activity of Mixed Microbial Populations in Fresh Marsh Soils, Microb. Ecol., 1999, vol. 37, pp. 152–162.

    Article  PubMed  CAS  Google Scholar 

  19. Castle, D.M., Montgomery, M.T., and Kirchman, D.L., Effects of Naphthalene on Microbial Community Composition in the Delaware Estuary, FEMS Microbiol. Ecol., 2006, vol. 56, pp. 55–63.

    Article  PubMed  CAS  Google Scholar 

  20. Feris, K.P., Hristova, K., Gebreyesus, B., Mackay, D., and Scow, K.M., A Shallow BTEX and MTBE Contaminated Aquifer Supports a Diverse Microbial Community, FEMS Microb. Ecol., 2004, vol. 48, pp. 589–600.

    Article  CAS  Google Scholar 

  21. Lebuhn, M., Heulin, T., and Hartmann, A., Production of Auxin and Other Indolic and Phenolic Compounds by Paenibacillus polymyxa Strains Isolated from Different Proximity to Plant Roots, FEMS Microbiol. Ecol., 1997, vol. 22, pp. 325–334.

    Article  CAS  Google Scholar 

  22. Rosado, A.S. and Seldin, L., Production of a Potentially Novel Anti-Microbial Substance by Bacillus polymyxa, J. Microbiol. Biotechnol., 1993, no. 9, pp. 521–528.

    Google Scholar 

  23. Reynaldi, F.J., De Giusti, M.R., and Alippi, A.M., Inhibition of the Growth of Ascosphaera apis by Bacillus and Paenibacillus Strains Isolated from Honey, Rev. Argent. Microbiol., 2004, vol. 36, pp. 52–55.

    PubMed  CAS  Google Scholar 

  24. Daane, L.L., Harjono, I., Barns, S.M., Launen, L.A., Palleroni, N.J., and Haggblom, M.M., PAH-Degradation by Paenibacillus spp. and Description of Paenibacillus naphtalenovorans sp. nov., a Naphthalene-Degrading Bacterium from the Rhizosphere of Salt Marsh Plants, Int. J. Syst. Bacteriol., 2002, vol. 52, pp. 131–139.

    CAS  Google Scholar 

  25. Tuomi, P.M., Salminen, J.M., and Jorgensen, K.S., The Abundance of nahAc Genes Correlates with the 14C-Naphthalene Mineralization Potential in Petroleum Hydrocarbon-Contaminated Oxic Soil Layers, FEMS Microbiol. Ecol., 2004, vol. 51, pp. 99–107.

    Article  PubMed  CAS  Google Scholar 

  26. Park, J.-W. and Crowley, D.E., Dynamic Changes in nahAc Gene Copy Number during Degradation of Naphthalene in PAH-Contaminated Soils, Appl. Microbiol. Biotechnol., 2006, vol. 72, pp. 1322–1329.

    Article  PubMed  CAS  Google Scholar 

  27. Zylstra, G.J., Kim, E., and Gloyal, A.K., Comparative Molecular Analysis of Genes for Polycyclic Aromatic Hydrocarbon Degradation, Genet. Engin., 1997, vol. 19, pp. 257–269.

    Article  CAS  Google Scholar 

  28. Beller, H.R., Kane, S., Legler, T.C., and Alvarez, P.J.J., A Real-Time Polymerase Chain Reaction Method for Monitoring Anaerobic, Hydrocarbondegrading Bacteria Based on a Catabolic Gene, Environ. Sci. Technol., 2002, vol. 36, pp. 3977–3984.

    CAS  Google Scholar 

  29. Kozyrovska, N.O., Negrutska, V.V., Kovalchuk, M.V., and Voznyuk, T.N., Paenibacillus sp., as a Promising Candidate for Development of a Novel Technology of Inoculant Production, Biopolymer. Cell, 2005, vol. 21, pp. 312–318.

    CAS  Google Scholar 

  30. Zyakun, A.M., Boronin, A.M., Kochetkov, V.V., Baskunov, B.P, Laurinavichyus, K.S., Zakharchenko, V.N., Peshenko, V.P., Anokhina, T.O., and Siunova, T.V., Ratio [13C]/[12C] as an Index for Express Estimation of Hydrocarbon-Oxidizing Potential of Microbiota in Soil Polluted with Crude Oil, Appl. Biochem. Mikcobiol., 2012, vol. 48, no. 2, pp. 206–215.

    Article  CAS  Google Scholar 

  31. Greene, E.A., Kay, J.G., Jaber, K., Stehmeier, L.G., and Voordouw, G., Composition of Soil Microbial Communities Enriched on a Mixture of Aromatic Hydrocarbons, Appl. Environ. Microbiol., 2000, vol. 66, pp. 5282–5289.

    Article  PubMed  CAS  Google Scholar 

  32. Hendrickx, B., Dejonghe, W., Boenne, W., Brennerova, M., Cernik, M., Lederer, T., Bucheli-Witschel, M., Bastiaens, L., Verstraete, W., Top, E.M., Diels, L., and Springael, D., Dynamics of an Oligotrophic Bacterial Aquifer Community During Contact with a Groundwater Plume Contaminated with Benzene, Toluene, Ethylbenzene and Xylenes: An in situ Mesocosm Study, Appl. Environ. Microbiol., 2005, vol. 71, pp. 3815–3825.

    Article  PubMed  CAS  Google Scholar 

  33. Gomes, N.C.M., Kosheleva, I.A., Wolf-Rainer, A., and Smalla, K., Effect of the Inoculant Strain Pseudomonas putida KT2442 (PNF142) and of Naphthalene Contamination on the Soil Bacterial Community, FEMS Microbiol. Ecol., 2005, vol. 54, pp. 21–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Panov.

Additional information

Original Russian Text © A.V. Panov, T.Z. Esikova, S.L. Sokolov, I.A. Kosheleva, A.M. Boronin, 2013, published in Mikrobiologiya, 2013, Vol. 82, No. 2, pp. 239–246.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panov, A.V., Esikova, T.Z., Sokolov, S.L. et al. Influence of soil pollution on the composition of a microbial community. Microbiology 82, 241–248 (2013). https://doi.org/10.1134/S0026261713010116

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261713010116

Keywords