Skip to main content
Log in

Lipid composition of the mycelium of the fungus Mucor hiemalis cultivated with trehalose, triacylglycerols, and itraconazole

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

We investigated the growth and cell lipid composition of the fungus Mucor hiemalis VKMF-1431 cultivated under aerobic conditions in the presence of the morphogenetic agents itraconazole, exogenous triacylglycerols, and trehalose. The sporangiospores of a 6-day culture were used as inocula. Under these conditions, the fungus produced mycelium; nevertheless, solitary yeastlike cells also developed on the glucose-containing medium and in the presence of itraconazole and sterilized triacylglycerols (sTAGs). No yeastlike growth occurred in the system with trehalose and with unsterilized (native) TAGs (nTAGs). With trehalose and nTAGs in the cultivation medium, the ratio between PEA and PC, the two main types of membrane lipids, was low. This testified to a relatively high PC percentage and, accordingly, a stable structure and a highly functional state of the membranes. Moreover, if the development of the fungus occurred exclusively as mycelium formation, the level of polyunsaturated fatty acids (γ-linolenic and arachidonic acid) increased in the presence of trehalose and that of linoleic acid increased in the presence of nTAGs. These results may suggest that unsaturated fatty acids and membrane lipids are related to the cell wall formation and the implementation of morphogenetic programs in mucorous fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nozawa, Y. and Kasai, R., Mechanism of Thermal Adaptation of Membrane Lipids in Tetrahymena pyriformis NT-1. Possible Evidence for Temperature-Mediated Induction of Palmitoyl-CoA Desaturase, Biochim. Biophys. Acta, 1978, vol. 529, no. 1, pp. 54–66.

    Article  PubMed  CAS  Google Scholar 

  2. Rao, T.V., Trivedi, A., and Prasad, P., Phospholipid Enrichment of Saccharomyces cerevisiae and Its Effect on Polyene Sensitivity, Can. J. Microbiol., 1985, vol. 31, no. 4, pp. 322–326.

    Article  PubMed  CAS  Google Scholar 

  3. Rao, T.V., Das, S., and Prasad, P., Effect of Phospholipid Enrichment on Nystatin Action: Differences in Antibiotic Sensitivity between in vivo and in vitro Conditions, Microbios, 1985, vol. 42, no. 169–170, pp. 145–153.

    PubMed  CAS  Google Scholar 

  4. Noverr, M.C., Phare, S.M., Toews, G.B., Coffey, M.J., and Huffnagle, G.B., Pathogenic Yeasts Cryptococccus neoformans and Candida albicans Produce Immunomodulatory Prostaglandins, Infect. Immun., 2001, vol. 69, pp. 2957–2963.

    Article  PubMed  CAS  Google Scholar 

  5. Noverr, M.C., Erb-Downward, J.R., and Huffnagle, G.B., Production of Eicosanoids and Other Oxylipins by Pathogenic Eukaryotic Microbes, Clin. Microbiol. Rev., 2003, vol. 16, no. 3, pp. 517–533.

    Article  PubMed  CAS  Google Scholar 

  6. Noverr, M.C. and Huffnagle, G.B., Regulation of Candida albicans Morphogenesis by Fatty Acid Metabolites, Infect. Immun., 2004, vol. 72, no. 11, pp. 6206–6210.

    Article  PubMed  CAS  Google Scholar 

  7. Klose, J., de Sa, M.M., and Kronstad, J.W., Lipid-Induced Filamentous Growth in Ustilago maydis, Mol. Microbiol., 2004, vol. 52, no. 3, pp. 823–835.

    Article  PubMed  CAS  Google Scholar 

  8. Jeennor, S., Laoteng, K., Tanticharoen, M., and Cheevadhanarak, S., Comparative Fatty Acid Profiling of Mucor rouxii under Different Stress Conditions, FEMS Microbiol. Lett., 2006, vol. 259, no. 1, pp. 60–66.

    Article  PubMed  CAS  Google Scholar 

  9. Macko, V., Inhibitors and Stimulants of Spore Generation and Infection Structure Formation in Fungi, in The Fungal Spore. Morphogenetic Controls, Turian, G. and Holh, H.R., Eds., New York: Academic, 1981, pp. 565–584.

    Google Scholar 

  10. Podila, G.K., Rogers, L.M., and Kolattukudy, P.E., Chemical Signals from Avocado Surface Wax Trigger Germination and Appressorium Formation in Colletotrichum gloeosporioides, Plant Physiol., 1993, vol. 103, pp. 267–272.

    PubMed  CAS  Google Scholar 

  11. Kolattukudy, P.E., Rogers, L.M., Li, D., Hwang, C.S., and Flaishman, M.A., Surface Signaling in Pathogenesis, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 4080–4087.

    Article  PubMed  CAS  Google Scholar 

  12. Wilson, R.A., Calvo, A.M., Chang, P.K., and Keller, N.P., Characterization of the Aspergillus parasiticus Δ12-Desaturase Gene: A Role for Lipid Metabolism in the Aspergillus-Seed Interaction, Microbiology (UK), 2004, vol. 150, no. 9, pp. 2881–2888.

    Article  CAS  Google Scholar 

  13. Orlowski, M., Mucor Dimorphism, Microbiol. Rev., 1991, vol. 55, pp. 234–258.

    CAS  Google Scholar 

  14. Illingworth, R.F., Rose, A.H., and Beckett, A., Changes in the Lipid Composition and Fine Structure of Saccharomyces cerevisiae during Ascus Formation, J. Bacteriol., 1973, vol. 113, pp. 373–386.

    PubMed  CAS  Google Scholar 

  15. Calvo, A.M., Gardner, H.W., and Keller, N.P., Genetic Connection between Fatty Acid Metabolism and Sporulation in Aspergillus nidulans, J. Biol. Chem., 2001, vol. 276, pp. 25766–25774.

    Article  PubMed  CAS  Google Scholar 

  16. Mysyakina, I.S. and Funtikova, N.S., The Role of Sterols in Morphogenetic Processes and Dimorphism in Fungi, Microbiology, 2007, vol. 76, no. 1, pp. 1–13.

    Article  CAS  Google Scholar 

  17. Mysyakina, I.S. and Feofilova, E.P., The Role of Lipids in the Morphogenetic Processes of Mycelial Fungi, Microbiology, 2011, vol. 80, no. 3, pp. 297–306.

    Article  CAS  Google Scholar 

  18. Vanden Bossche, H., Biochemical Targets for Antifungal Azole Derivatives: Hypothesis on the Mode of Action, Curr. Topics Med. Mycol., 1985, vol. 1, pp. 313–351.

    Article  Google Scholar 

  19. Vanden Bossche, H., Importance and Role of Sterols in Fungal Membranes, in Biochemistry of Cell Walls and Membranes in Fungi, Kuhn, P.J., Trinci, A.P.J., Jung, M.J., Goosey, M.W., and Copping, L.G, Eds., Berlin: Springer, 1990, pp. 135–157.

    Chapter  Google Scholar 

  20. Kerkenaar, A. and Barug, D., Fluorescence Microscope Studies of Ustilago maydis and Penicillium italicum after Treatment with Imazalil or Fenpropimorph, Pestic. Sci., 1984, vol. 15, pp. 199–205.

    Article  CAS  Google Scholar 

  21. Marichal, P., Gorrens, J., and Vanden Bossche, H., The Action of Itraconazole and Ketokonazole on Growth and Sterol Synthesis in Aspergillus fumigatus and Aspergillus niger, Sabouraudia, 1985, vol. 23, pp. 13–21.

    Article  PubMed  CAS  Google Scholar 

  22. Barug, D., Samson, R.A., and Kerkenaar, A., Microscopic Studies of Candida albicans and Torulopsis glabrata after in vitro Treatment with Bifonazole, Arzneimittel-Forschung, 1983, vol. 33, pp. 779–782.

    Google Scholar 

  23. Hector, R.F. and Braun, P.C., The Effect of Bifonazole on Chitin Synthesis in Candida albicans, in Recent Trends in the Discovery, Development and Evaluation of Antifungal Agents, Fromtling, R.A. and Prous, J.R., Eds., Barcelona: Science Publ., 1987, pp. 369–382.

    Google Scholar 

  24. Odds, F., Morphogenesis in Candida albicans, CRC Crit. Rev. Microbiol., 1985, vol. 12, pp. 45–93.

    Article  CAS  Google Scholar 

  25. Odds, F.C., Cockayne, A., Hayward, J., and Abbott, A.B., Effects of Imidazole and Triazole-Derivative Antifungal Compounds on the Growth and Morphological Development of Candida albicans Hyphae, J. Gen. Microbiol., 1985, vol. 131, pp. 2581–2589.

    PubMed  CAS  Google Scholar 

  26. Nomura, S., Horiuchi, T., Omura, S., and Hata, T., The Action Mechanism of Cerulenin. I. Effect of Cerulenin on Sterol and Fatty Acid Biosynthesis in Yeast, J. Biochem., 1972, vol. 71, no. 5, pp. 783–796.

    PubMed  CAS  Google Scholar 

  27. Greenspan, M.D. and Mackow, R.C., The Effect of Cerulenin on Sterol Biosynthesis in Saccharomyces cerevisiae, Lipids, 1977, vol. 12, no. 9, pp. 729–740.

    Article  PubMed  CAS  Google Scholar 

  28. Ohno, T., Awaya, J., and Omura, S., Inhibition of Sporulation by Cerulenin and Its Reversion by Exogenous Fatty Acids in Saccharomyces cerevisiae, Antimicrob. Agents Chemother., 1976, vol. 9, no. 1, pp. 42–48.

    Article  PubMed  CAS  Google Scholar 

  29. Brambl, R., Wenzler, H., and Josephson, M., Mitochondrial Biogenesis during Fungal Spore Germination: Effects of the Antilipogenic Antibiotic Cerulenin upon Botryodiplodia Spores, J. Bacteriol., 1978, vol. 135, no. 2, pp. 311–317.

    PubMed  CAS  Google Scholar 

  30. Daum, G., Gamerith, G., and Paltauf, F., The Effect of Cerulenin and Exogenous Fatty Acids on Triacylglycerol Accumulation in an Inositol-Deficient Yeast, Saccharomyces carlsbergensis, Biochim. Biophys. Acta, 1979, vol. 573, no. 2, pp. 413–415.

    Article  PubMed  CAS  Google Scholar 

  31. Ito, E., Cihlar, R.L., and Inderlied, C.D., Lipid Synthesis during Morphogenesis in Mucor racemosus, J. Bacteriol., 1982, vol. 152, pp. 880–887.

    PubMed  CAS  Google Scholar 

  32. Sanadi, S., Pandey, R., and Khuller, G.K., Reversal of Cerulenin-Induced Inhibition of Phospholipids and Sterol Synthesis by Exogenous Fatty Acids/Sterols in Epidermophyton floccosum, Biochim. Biophys. Acta, 1987, vol. 921, no. 2, pp. 341–346.

    Article  PubMed  CAS  Google Scholar 

  33. Van Laere, A., Trehalose, Reserve and/or Stress Metabolite?, FEMS Microbiol. Rev., 1989, vol. 63, pp. 201–210.

    Google Scholar 

  34. Wiemken, A., Trehalose in Yeast, Stress Protectant rather Than Reserve Carbohydrate, Antonie van Leeuwenhoek Int. J. Gen. Mol. Microbiol., 1990, vol. 59, pp. 209–217.

    Article  Google Scholar 

  35. Sampedro, J.G., Guerra, G., Pardo, J.-P., and Uribe, S., Trehalose-Mediated Protection of the Plasma Membrane H+-ATPase from Kluyveromyces lactis during Freeze-Drying and Rehydration, Cryobiol., 1998, vol. 37, pp. 131–138.

    Article  CAS  Google Scholar 

  36. D’Amore, T., Crumplen, R., and Stewart, G.G., The Involvement of Trehalose in Yeast Stress Tolerance, J. Ind. Microbiol., 1991, vol. 7, pp. 191–196.

    Article  Google Scholar 

  37. Ribeiro, M.J.S., Leao, L.S.C., Morais, P.B., Rosa, C.A., and Panek, A.D., Trehalose Accumulation by Tropical Yeast Strains Submitted to Stress Conditions, Antonie van Leeuwenhoek, 1999, vol. 75, pp. 245–251.

    Article  PubMed  CAS  Google Scholar 

  38. Lucio, A.K.B., Polizeli, M.L.T.M., Jorge, J.A., and Terenzi, H.F., Stimulation of Hyphal Growth in Anaerobic Cultures of Mucor rouxii by Extracellular Trehalose. Relevance of Cell Wall-Bound Activity of Acid Trehalase for Trehalose Utilization, FEMS Microbiol. Lett., 2000, vol. 182, pp. 9–13.

    Article  PubMed  CAS  Google Scholar 

  39. Funtikova, N.S., Mysyakina, I.S., and Poglazova, M.N., Morphogenesis and Lipid Composition of Mucor Fungi Grown in the Presence of Chloroanilines in Submerged Culture, Microbiology, 1999, vol. 68, no. 4, pp. 406–411.

    CAS  Google Scholar 

  40. Mysyakina, I.S. and Funtikova, N.S., Changes in the Lipid Composition of Mucor hiemalis Sporangiospores Related to the Age of the Spore-Forming Culture, Microbiology, 2003, vol. 72, no. 4, pp. 461–465.

    Article  CAS  Google Scholar 

  41. Mysyakina, I.S. and Funtikova, N.S., Lipid Composition of the Yeastlike and Mycelial Mucor hiemalis Cells Grown in the Presence of 4-Chloroaniline, Microbiology, 2000, vol. 69, no. 6, pp. 670–675.

    Article  CAS  Google Scholar 

  42. Mysyakina, I.S. and Funtikova, N.S., Lipid Composition of the Arthrospores, Yeastlike Cells, and Mycelium of the Fungus Mucor hiemalis, Microbiology, 2001, vol. 70, no. 4, pp. 403–407.

    Article  CAS  Google Scholar 

  43. Folch, G., Lees, M., and Sloane-Stanley, G.H., A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem., 1957, vol. 226, no. 1, pp. 497–509.

    PubMed  CAS  Google Scholar 

  44. Bartnicki-Garcia, S., Symposium on Biochemical Bases of Morphogenesis in Fungi. III. Mould-Yeast Dimorphism of Mucor, Bacteriol. Rev., 1963, vol. 27, pp. 293–304.

    PubMed  CAS  Google Scholar 

  45. Sypherd, P.S., Borgia, P., and Pasnokas, J.L., Biochemistry of Dimorphism in the Fungus Mucor, Adv. Microb. Physiol., 1978, vol. 18, pp. 67–104.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Mysiakina.

Additional information

Original Russian Text © I.S. Mysiakina, Ya.E. Sergeeva, A.A. Ivashechkin, E.P. Feofilova, 2012, published in Mikrobiologiya, 2012, Vol. 81, No. 6, pp. 726–732.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mysiakina, I.S., Sergeeva, Y.E., Ivashechkin, A.A. et al. Lipid composition of the mycelium of the fungus Mucor hiemalis cultivated with trehalose, triacylglycerols, and itraconazole. Microbiology 81, 669–675 (2012). https://doi.org/10.1134/S0026261712060094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261712060094

Keywords

Navigation