Skip to main content

Diversity of glycosidase activities in the bacteria of the phylum Bacteroidetes isolated from marine algae

Abstract

Glycosidase activities of 177 strains of the phylum Bacteroidetes, belonging to 18 genera and isolated from the algae Chondrus sp., Polysiphonia sp., Neosiphonia japonica, Saccharina crassifolia, Saccharina japonica, Chorda filum, Acrosiphonia sonderi, and Ulva fenestrata collected in the littoral zones of the Sea of Okhotsk and the Sea of Japan, Pacific Ocean, were studied. According to the data obtained, glycosidases catalyzing hydrolysis of the β-glycoside bond were present in over 70% epiphytes of marine algae. It should be noted that α-galactosidases and the extremely rare enzymes, α-N-acetylgalactosaminidases, were more frequent in the Bacteroidetes than in the proteobacteria analyzed previously. It was found that the overwhelming majority of the bacteria of the dominant genera Zobellia and Maribacter contained the complete set of the tested glycosidases involved in degradation of algal polysaccharides. Apparently, the presence of the wide range of glycosidases in bacterial strains of these genera makes it possible for them to occupy diverse ecological niches under extreme conditions of the tidal zone. However, such important enzymes of the microbial lytic complex as α-galactosidases, β-galactosidases, or β-xylosidases, were not detected in the numerically important genus Winogradskyella. The noted difference in the metabolic profiles of the strains of these genera suggests the assumption that Winogradskyella strains play an unique role in the microbial communities, unrelated to the hydrolysis of such polysaccharides as agar and carrageenan. Significant differences in production of glycosidases among the different taxonomic groups were revealed, which is of importance for directed search of promising enzymes for biotechnology.

This is a preview of subscription content, access via your institution.

References

  1. Kloareg, B. and Quatrano, R.S., Structure of Cell Walls of Marine Algae and Ecophysiological Functions of the Matrix Polysaccharides, Oceanogr. Mar. Biol. Annu. Rev., 1988, vol. 26, pp. 259–315.

    Google Scholar 

  2. Kusaykin, M., Bakunina, I., Sova, V., Ermakova, S., Kuznetsova, T., Besednova, N., Zaporozhets, T., and Zvyagintseva, T., Structure, Biological Activity, and Enzymatic Transformation of Fucoidans from the Brown Seaweeds, Biotechnol. J., 2008, vol. 3, no. 7, pp. 904–915.

    PubMed  Article  CAS  Google Scholar 

  3. Usov, A.I. and Bilan, M.I., Fucoidans, Sulfated Polysaccharides from Brown Algae, Usp. Khim., 2009, vol. 78, no. 8, pp. 846–862.

    Article  Google Scholar 

  4. Jiao, G., Yu, G., Zhang, J., and Ewart, H.S., Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae, Mar. Drugs, 2011, vol. 9, no. 2, pp. 196–223.

    PubMed  Article  CAS  Google Scholar 

  5. Usov, A.I., Polysaccharides of the Red Algae, Adv. Carbohydr. Chem. Biochem., 2011, vol. 65, pp. 115–217.

    PubMed  Article  CAS  Google Scholar 

  6. Zvyagintseva, T.N., Besednova, N.N., and Elyakova, L.A., Struktura i immunotropnoe deistvie 1,3;1,6-β-D-glyukanov (Structure and Immunotropic Activity of 1,3;1,6-β-D-Glucans), Vladivostok: Dal’nauka, 2002.

    Google Scholar 

  7. Yu, S., Blennow, A., Bojko, M., Madsen, F., Olsen, C.E., and Engelsen, S.B., Physico-Chemical Characterization of Floridean Starch of Red Algae, Starch-Starke, 2002, vol. 54, no. 2, pp. 66–74.

    Article  CAS  Google Scholar 

  8. Shevchenko, N.M., Burtseva, Yu.V., Zvyagintseva, T.N., Makar’eva, T.N., Sergeeva, O.S., Zakharenko, A.M., Isakov, V.V., Nguyen Thi Linh, Nguen Xuan Hoa, BuiMinh Ly, and Pham Van Huyen, Polysaccharides and Sterols of Green Algae Caulerpa lentillifera and C. sertularioides, Khimiya Prirod. Soed., 2009, no. 1, pp. 5–8.

  9. Sawabe, T., Ohtsuka, M., and Ezura, Y., Novel Alginate Lyases from Marine Bacterium Alteromonas sp. Strain H-4, Carbohydr. Res., 1997, vol. 304, no. 1, pp. 69–76.

    PubMed  Article  CAS  Google Scholar 

  10. Alekseeva, S.A., Bakunina, I.Yu., Nedashkovskaya, O.I., Isakov, V.V., Mikhailov, V.V., and Zvyagintseva, T.N., Intracellular Alginolytic Enzymes of the Marine Bacterium Pseudoalteromonas citrea KMM 3297, Biochemistry (Moscow), 2004, vol. 69, no. 3, pp. 262–269.

    Article  CAS  Google Scholar 

  11. Sova, V.V., Elyakova, L.A., Ivanova, E.P., Fedosov, Yu.V., and Mikhailov, V.V., Induced β-1,3-Glucanase from the Marine Bacterium Alteromonas sp., Biokhimiya, 1994, vol. 59, no. 9, pp. 1369–1377.

    CAS  Google Scholar 

  12. Giordano, A., Andreotti, G., Tramice, A., and Trincone, A., Marine Glycosyl Hydrolases in the Hydrolysis and Synthesis of Oligosaccharides, Biotechnol. J., 2006, vol. 1, no. 5, pp. 511–530.

    PubMed  Article  CAS  Google Scholar 

  13. Bakunina, I.Yu., Nedashkovskaya, O.I., Alekseeva, S.A., Ivanova, E.P., Romanenko, L.A., Gorshkova, N.M., Isakov, V.V., Zvyagintseva, T.N., and Mikhailov, V.V., Degradation of Fucoidan by the Marine Proteobacterium Pseudoalteromonas citrea, Microbiology, 2002, vol. 71, no. 1, pp. 41–47.

    Article  CAS  Google Scholar 

  14. Colin, S., Deniaud, E., Jam, M., Descamps, V., Chevolot, Y., Kervarec, N., Yvin, J.-C., Barbeyron, T., Michel, G., and Kloareg, B., Cloning and Biochemical Characterization of the Fucanase FcnA: Definition of a Novel Glycoside Hydrolase Family Specific for Sulfated Fucans, Glycobiology, 2006, vol. 16, no. 11, pp. 1021–1032.

    PubMed  Article  CAS  Google Scholar 

  15. Sakai, T., Kimura, H., and Kato, I., Purification of Sulfated Fucoglucuronomannan Lyase from Bacterial Strain of Fucobacter marina and Study of Appropriate Conditions for Its Enzyme Digestion, Mar. Biotechnol., 2003, vol. 5, no. 4, pp. 380–387.

    PubMed  Article  CAS  Google Scholar 

  16. Sakai, T., Ishizuka, K., Shimanaka, K., Ikai, K., and Kato, I., Structures of Oligosaccharides Derived from Cladosiphon okamuranus Fucoidan by Digestion with Marine Bacterial Enzymes, Mar. Biotechnol., 2003, vol. 5, no. 6, pp. 536–544.

    PubMed  Article  CAS  Google Scholar 

  17. Hehemann, J.-H., Correc, G., Barbeyron, T., Helbert, W., Czjzek, M., and Michel, G., Transfer of Carbohydrate-Active Enzymes from Marine Bacteria to Japanese Gut Microbiota, Nature, 2010, vol. 464, no. 7290, pp. 908–911.

    PubMed  Article  CAS  Google Scholar 

  18. Pohlon, E., Marxsen, J., and Küsel, K., Pioneering Bacterial and Algal Communities and Potential Extracellular Enzyme Activities of Stream Biofilms, FEMS Microbiol. Ecol., 2010, vol. 71, no. 3, pp. 364–373.

    PubMed  Article  CAS  Google Scholar 

  19. Nedashkovskaya, O.I., Marine Aerobic Heterotrophic Bacteria of the Type Bacteroidetes, Extended Abstract of Doctoral (Biol.) Dissertation, Vladivostok, 2007.

  20. Urvantseva, A.M., Bakunina, I.Yu., Nedashkovskaya, O.I., Kim, S.B., and Zvyagintseva, T.N., Distribution of Intracellular Fucoidan Hydrolases among Marine Bacteria of the Family Flavobacteriaceae, Appl. Biochem. Microbiol., 2006, vol. 42, no. 5, pp. 484–491.

    Article  CAS  Google Scholar 

  21. Bakunina, I.Yu., Kuhlmann, R.A., Likhosherstov, L.M., Martynova, M.D., Nedashkovskaya, O.I., Mikhailov, V.V., and Elyakova, L.A., α-N-Acetylgalactosaminidase from Marine Bacterium Arenibacter latericius KMM 426T Removing Blood Type Specificity of A-Erythrocytes, Biochemistry (Moscow), 2002, vol. 67, no. 6, pp. 689–695.

    Article  CAS  Google Scholar 

  22. Bakunina, I.Yu., Nedashkovskaya, O.I., Kim, S.B., Zvyagintseva, T.N., and Mikhailov, V.V., Distribution of α-N-Acetylgalactosaminidases among Marine Bacteria of the Phylum Bacteroidetes, Epiphytes of Marine Algae of the Seas of Okhotsk and Japan, Microbiology, 2012, vol. 81, no. 3, pp. 373–380.

    Article  CAS  Google Scholar 

  23. Nedashkovskaya, O.I., Kim, S.B., Shin, D.S., Beleneva, I.A., Vancanneyt, M., and Mikhailov, V.V., Echinicola vietnamensis sp. nov., a New Bacterium of the Phylum Bacteroidetes Isolated from Sea Water, Int. J. Syst. Evol. Microbiol., 2007, vol. 57, pp. 761–763.

    PubMed  Article  CAS  Google Scholar 

  24. Bakunina, I.Yu., Ivanova, E.P., Mikhailov, V.V., Nedashkovskaya, O.I., Gorshkova, N.M., and Parfenova, V.V., Occurrence of α-N-Acetylgalactosaminidases among Marine and Fershwater Microorganisms, Mikrobiologiya, 1994, vol. 63, no. 5, pp. 847–853.

    CAS  Google Scholar 

  25. Ivanova, E.P., Bakunina, I.Yu., Nedashkovskaya, O.I., Gorshkova, N.M., Mikhailov, V.V., and Elyakova, L.A., Incidence of Marine Microorganisms Producing β-N-Acetylglucosaminidases, α-Galactosidases, and α-N-Acetylgalactosaminidases, Russ. J. Mar. Biol., 1998, vol. 24, no. 6, pp. 365–372.

    Google Scholar 

  26. Bakunina, I.Yu., Ivanova, E.P., Nedashkovskaya, O.I., Gorshkova, N.M., Elyakova, L.A., and Mikhailov, V.V., Screening for α-Galactosidase Producers among Marine Bacteria of the Genus Alteromonas, Appl. Biochem. Microbiol., 1996, vol. 32, no. 6, pp. 624–628.

    CAS  Google Scholar 

  27. Lynd, L.R., Weimer, P.J., van Zyl, W.H., and Pretorius, I.S., Microbial Cellulose Utilization: Fundamentals and Biotechnology, Microbiol. Mol. Biol. Rev., 2002, vol. 66, no. 3, pp. 506–577.

    PubMed  Article  CAS  Google Scholar 

  28. Pesentseva, M.S., Kusaykin, M.I., Anastyuk, S.D., Sova, V.V., and Zvyagintseva, T.N., Catalytic Properties and Mode of Action of Endo-(1→3)-Beta-D-Glucanase and Beta-D-Glucosidase from the Marine Mollusk Littorina kurila, Carbohydr. Res., 2008, vol. 343, no. 14, pp. 2393–2400.

    PubMed  Article  CAS  Google Scholar 

  29. Balabanova, L.A., Bakunina, I.Y., Nedashkovskaya, O.I., Makarenkova, I.D., Zaporozhets, T.S., Besednova, N.N., Zvyagintseva, T.N., and Rasskazov, V.A., Molecular Characterization and Therapeutic Potential of a Marine Bacterium Pseudoalteromonas sp. KMM 701 α-Galactosidase, Mar. Biotechnol., 2010, vol. 12, no. 1, pp. 111–120.

    PubMed  Article  CAS  Google Scholar 

  30. Rebuffet, E., Groisillier, A., Thompson, A., Jeudy, A., Barbeyron, T., Czjzek, M., and Michel, G., Discovery and Structural Characterization of a Novel Glycosidase Family of Marine Origin, Environ. Microbiol., 2011, vol. 13, no. 5, pp. 1253–1270.

    PubMed  Article  CAS  Google Scholar 

  31. Romani, A.M. and Sabater, S., Influence of Algal Biomass on Extracellular Enzyme Activity in River Biofilms, Microb. Ecol., 2000, vol. 41, no. 1, pp. 16–24.

    Google Scholar 

  32. Balabanova, L.A., Bakunina, I.Yu., Likhatskaya, G.N., Zvyagintseva, T.N., and Rasskazov, V.A., Glycoside Hydrolases of Marine Bacteria Are Promising Tools in Haemotherapy, 2nd Int. Conf. Bioenvironment, Biodiversity and Renewable Energies BIONATURE, Venice, 2011, pp. 47–50.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Bakunina.

Additional information

Original Russian Text © I.Yu. Bakunina, O.I. Nedashkovskaya, S.B. Kim, T.N. Zvyagintseva, V.V. Mikhailov, 2012, published in Mikrobiologiya, 2012, Vol. 81, No. 6, pp. 745–753.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bakunina, I.Y., Nedashkovskaya, O.I., Kim, S.B. et al. Diversity of glycosidase activities in the bacteria of the phylum Bacteroidetes isolated from marine algae. Microbiology 81, 688–695 (2012). https://doi.org/10.1134/S0026261712060033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261712060033

Keywords

  • α-galactosidase
  • α-mannosidase
  • α-L-fucosidase
  • β-galactosidase
  • α-N-acetylgalactosaminidase
  • β-xylosidase
  • β-N-acetylglucosaminidase
  • marine bacteria of the phylum Bacteroidetes: Arenibacter
  • Cellulophaga
  • Maribacter
  • Zobellia
  • Formosa
  • Winogradskyella
  • marine algae