, Volume 81, Issue 6, pp 688–695 | Cite as

Diversity of glycosidase activities in the bacteria of the phylum Bacteroidetes isolated from marine algae

  • I. Yu. Bakunina
  • O. I. Nedashkovskaya
  • S. B. Kim
  • T. N. Zvyagintseva
  • V. V. Mikhailov
Experimental Articles


Glycosidase activities of 177 strains of the phylum Bacteroidetes, belonging to 18 genera and isolated from the algae Chondrus sp., Polysiphonia sp., Neosiphonia japonica, Saccharina crassifolia, Saccharina japonica, Chorda filum, Acrosiphonia sonderi, and Ulva fenestrata collected in the littoral zones of the Sea of Okhotsk and the Sea of Japan, Pacific Ocean, were studied. According to the data obtained, glycosidases catalyzing hydrolysis of the β-glycoside bond were present in over 70% epiphytes of marine algae. It should be noted that α-galactosidases and the extremely rare enzymes, α-N-acetylgalactosaminidases, were more frequent in the Bacteroidetes than in the proteobacteria analyzed previously. It was found that the overwhelming majority of the bacteria of the dominant genera Zobellia and Maribacter contained the complete set of the tested glycosidases involved in degradation of algal polysaccharides. Apparently, the presence of the wide range of glycosidases in bacterial strains of these genera makes it possible for them to occupy diverse ecological niches under extreme conditions of the tidal zone. However, such important enzymes of the microbial lytic complex as α-galactosidases, β-galactosidases, or β-xylosidases, were not detected in the numerically important genus Winogradskyella. The noted difference in the metabolic profiles of the strains of these genera suggests the assumption that Winogradskyella strains play an unique role in the microbial communities, unrelated to the hydrolysis of such polysaccharides as agar and carrageenan. Significant differences in production of glycosidases among the different taxonomic groups were revealed, which is of importance for directed search of promising enzymes for biotechnology.


α-galactosidase α-mannosidase α-L-fucosidase β-galactosidase α-N-acetylgalactosaminidase β-xylosidase β-N-acetylglucosaminidase marine bacteria of the phylum Bacteroidetes: Arenibacter Cellulophaga Maribacter Zobellia Formosa Winogradskyella marine algae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kloareg, B. and Quatrano, R.S., Structure of Cell Walls of Marine Algae and Ecophysiological Functions of the Matrix Polysaccharides, Oceanogr. Mar. Biol. Annu. Rev., 1988, vol. 26, pp. 259–315.Google Scholar
  2. 2.
    Kusaykin, M., Bakunina, I., Sova, V., Ermakova, S., Kuznetsova, T., Besednova, N., Zaporozhets, T., and Zvyagintseva, T., Structure, Biological Activity, and Enzymatic Transformation of Fucoidans from the Brown Seaweeds, Biotechnol. J., 2008, vol. 3, no. 7, pp. 904–915.PubMedCrossRefGoogle Scholar
  3. 3.
    Usov, A.I. and Bilan, M.I., Fucoidans, Sulfated Polysaccharides from Brown Algae, Usp. Khim., 2009, vol. 78, no. 8, pp. 846–862.CrossRefGoogle Scholar
  4. 4.
    Jiao, G., Yu, G., Zhang, J., and Ewart, H.S., Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae, Mar. Drugs, 2011, vol. 9, no. 2, pp. 196–223.PubMedCrossRefGoogle Scholar
  5. 5.
    Usov, A.I., Polysaccharides of the Red Algae, Adv. Carbohydr. Chem. Biochem., 2011, vol. 65, pp. 115–217.PubMedCrossRefGoogle Scholar
  6. 6.
    Zvyagintseva, T.N., Besednova, N.N., and Elyakova, L.A., Struktura i immunotropnoe deistvie 1,3;1,6-β-D-glyukanov (Structure and Immunotropic Activity of 1,3;1,6-β-D-Glucans), Vladivostok: Dal’nauka, 2002.Google Scholar
  7. 7.
    Yu, S., Blennow, A., Bojko, M., Madsen, F., Olsen, C.E., and Engelsen, S.B., Physico-Chemical Characterization of Floridean Starch of Red Algae, Starch-Starke, 2002, vol. 54, no. 2, pp. 66–74.CrossRefGoogle Scholar
  8. 8.
    Shevchenko, N.M., Burtseva, Yu.V., Zvyagintseva, T.N., Makar’eva, T.N., Sergeeva, O.S., Zakharenko, A.M., Isakov, V.V., Nguyen Thi Linh, Nguen Xuan Hoa, BuiMinh Ly, and Pham Van Huyen, Polysaccharides and Sterols of Green Algae Caulerpa lentillifera and C. sertularioides, Khimiya Prirod. Soed., 2009, no. 1, pp. 5–8.Google Scholar
  9. 9.
    Sawabe, T., Ohtsuka, M., and Ezura, Y., Novel Alginate Lyases from Marine Bacterium Alteromonas sp. Strain H-4, Carbohydr. Res., 1997, vol. 304, no. 1, pp. 69–76.PubMedCrossRefGoogle Scholar
  10. 10.
    Alekseeva, S.A., Bakunina, I.Yu., Nedashkovskaya, O.I., Isakov, V.V., Mikhailov, V.V., and Zvyagintseva, T.N., Intracellular Alginolytic Enzymes of the Marine Bacterium Pseudoalteromonas citrea KMM 3297, Biochemistry (Moscow), 2004, vol. 69, no. 3, pp. 262–269.CrossRefGoogle Scholar
  11. 11.
    Sova, V.V., Elyakova, L.A., Ivanova, E.P., Fedosov, Yu.V., and Mikhailov, V.V., Induced β-1,3-Glucanase from the Marine Bacterium Alteromonas sp., Biokhimiya, 1994, vol. 59, no. 9, pp. 1369–1377.Google Scholar
  12. 12.
    Giordano, A., Andreotti, G., Tramice, A., and Trincone, A., Marine Glycosyl Hydrolases in the Hydrolysis and Synthesis of Oligosaccharides, Biotechnol. J., 2006, vol. 1, no. 5, pp. 511–530.PubMedCrossRefGoogle Scholar
  13. 13.
    Bakunina, I.Yu., Nedashkovskaya, O.I., Alekseeva, S.A., Ivanova, E.P., Romanenko, L.A., Gorshkova, N.M., Isakov, V.V., Zvyagintseva, T.N., and Mikhailov, V.V., Degradation of Fucoidan by the Marine Proteobacterium Pseudoalteromonas citrea, Microbiology, 2002, vol. 71, no. 1, pp. 41–47.CrossRefGoogle Scholar
  14. 14.
    Colin, S., Deniaud, E., Jam, M., Descamps, V., Chevolot, Y., Kervarec, N., Yvin, J.-C., Barbeyron, T., Michel, G., and Kloareg, B., Cloning and Biochemical Characterization of the Fucanase FcnA: Definition of a Novel Glycoside Hydrolase Family Specific for Sulfated Fucans, Glycobiology, 2006, vol. 16, no. 11, pp. 1021–1032.PubMedCrossRefGoogle Scholar
  15. 15.
    Sakai, T., Kimura, H., and Kato, I., Purification of Sulfated Fucoglucuronomannan Lyase from Bacterial Strain of Fucobacter marina and Study of Appropriate Conditions for Its Enzyme Digestion, Mar. Biotechnol., 2003, vol. 5, no. 4, pp. 380–387.PubMedCrossRefGoogle Scholar
  16. 16.
    Sakai, T., Ishizuka, K., Shimanaka, K., Ikai, K., and Kato, I., Structures of Oligosaccharides Derived from Cladosiphon okamuranus Fucoidan by Digestion with Marine Bacterial Enzymes, Mar. Biotechnol., 2003, vol. 5, no. 6, pp. 536–544.PubMedCrossRefGoogle Scholar
  17. 17.
    Hehemann, J.-H., Correc, G., Barbeyron, T., Helbert, W., Czjzek, M., and Michel, G., Transfer of Carbohydrate-Active Enzymes from Marine Bacteria to Japanese Gut Microbiota, Nature, 2010, vol. 464, no. 7290, pp. 908–911.PubMedCrossRefGoogle Scholar
  18. 18.
    Pohlon, E., Marxsen, J., and Küsel, K., Pioneering Bacterial and Algal Communities and Potential Extracellular Enzyme Activities of Stream Biofilms, FEMS Microbiol. Ecol., 2010, vol. 71, no. 3, pp. 364–373.PubMedCrossRefGoogle Scholar
  19. 19.
    Nedashkovskaya, O.I., Marine Aerobic Heterotrophic Bacteria of the Type Bacteroidetes, Extended Abstract of Doctoral (Biol.) Dissertation, Vladivostok, 2007.Google Scholar
  20. 20.
    Urvantseva, A.M., Bakunina, I.Yu., Nedashkovskaya, O.I., Kim, S.B., and Zvyagintseva, T.N., Distribution of Intracellular Fucoidan Hydrolases among Marine Bacteria of the Family Flavobacteriaceae, Appl. Biochem. Microbiol., 2006, vol. 42, no. 5, pp. 484–491.CrossRefGoogle Scholar
  21. 21.
    Bakunina, I.Yu., Kuhlmann, R.A., Likhosherstov, L.M., Martynova, M.D., Nedashkovskaya, O.I., Mikhailov, V.V., and Elyakova, L.A., α-N-Acetylgalactosaminidase from Marine Bacterium Arenibacter latericius KMM 426T Removing Blood Type Specificity of A-Erythrocytes, Biochemistry (Moscow), 2002, vol. 67, no. 6, pp. 689–695.CrossRefGoogle Scholar
  22. 22.
    Bakunina, I.Yu., Nedashkovskaya, O.I., Kim, S.B., Zvyagintseva, T.N., and Mikhailov, V.V., Distribution of α-N-Acetylgalactosaminidases among Marine Bacteria of the Phylum Bacteroidetes, Epiphytes of Marine Algae of the Seas of Okhotsk and Japan, Microbiology, 2012, vol. 81, no. 3, pp. 373–380.CrossRefGoogle Scholar
  23. 23.
    Nedashkovskaya, O.I., Kim, S.B., Shin, D.S., Beleneva, I.A., Vancanneyt, M., and Mikhailov, V.V., Echinicola vietnamensis sp. nov., a New Bacterium of the Phylum Bacteroidetes Isolated from Sea Water, Int. J. Syst. Evol. Microbiol., 2007, vol. 57, pp. 761–763.PubMedCrossRefGoogle Scholar
  24. 24.
    Bakunina, I.Yu., Ivanova, E.P., Mikhailov, V.V., Nedashkovskaya, O.I., Gorshkova, N.M., and Parfenova, V.V., Occurrence of α-N-Acetylgalactosaminidases among Marine and Fershwater Microorganisms, Mikrobiologiya, 1994, vol. 63, no. 5, pp. 847–853.Google Scholar
  25. 25.
    Ivanova, E.P., Bakunina, I.Yu., Nedashkovskaya, O.I., Gorshkova, N.M., Mikhailov, V.V., and Elyakova, L.A., Incidence of Marine Microorganisms Producing β-N-Acetylglucosaminidases, α-Galactosidases, and α-N-Acetylgalactosaminidases, Russ. J. Mar. Biol., 1998, vol. 24, no. 6, pp. 365–372.Google Scholar
  26. 26.
    Bakunina, I.Yu., Ivanova, E.P., Nedashkovskaya, O.I., Gorshkova, N.M., Elyakova, L.A., and Mikhailov, V.V., Screening for α-Galactosidase Producers among Marine Bacteria of the Genus Alteromonas, Appl. Biochem. Microbiol., 1996, vol. 32, no. 6, pp. 624–628.Google Scholar
  27. 27.
    Lynd, L.R., Weimer, P.J., van Zyl, W.H., and Pretorius, I.S., Microbial Cellulose Utilization: Fundamentals and Biotechnology, Microbiol. Mol. Biol. Rev., 2002, vol. 66, no. 3, pp. 506–577.PubMedCrossRefGoogle Scholar
  28. 28.
    Pesentseva, M.S., Kusaykin, M.I., Anastyuk, S.D., Sova, V.V., and Zvyagintseva, T.N., Catalytic Properties and Mode of Action of Endo-(1→3)-Beta-D-Glucanase and Beta-D-Glucosidase from the Marine Mollusk Littorina kurila, Carbohydr. Res., 2008, vol. 343, no. 14, pp. 2393–2400.PubMedCrossRefGoogle Scholar
  29. 29.
    Balabanova, L.A., Bakunina, I.Y., Nedashkovskaya, O.I., Makarenkova, I.D., Zaporozhets, T.S., Besednova, N.N., Zvyagintseva, T.N., and Rasskazov, V.A., Molecular Characterization and Therapeutic Potential of a Marine Bacterium Pseudoalteromonas sp. KMM 701 α-Galactosidase, Mar. Biotechnol., 2010, vol. 12, no. 1, pp. 111–120.PubMedCrossRefGoogle Scholar
  30. 30.
    Rebuffet, E., Groisillier, A., Thompson, A., Jeudy, A., Barbeyron, T., Czjzek, M., and Michel, G., Discovery and Structural Characterization of a Novel Glycosidase Family of Marine Origin, Environ. Microbiol., 2011, vol. 13, no. 5, pp. 1253–1270.PubMedCrossRefGoogle Scholar
  31. 31.
    Romani, A.M. and Sabater, S., Influence of Algal Biomass on Extracellular Enzyme Activity in River Biofilms, Microb. Ecol., 2000, vol. 41, no. 1, pp. 16–24.Google Scholar
  32. 32.
    Balabanova, L.A., Bakunina, I.Yu., Likhatskaya, G.N., Zvyagintseva, T.N., and Rasskazov, V.A., Glycoside Hydrolases of Marine Bacteria Are Promising Tools in Haemotherapy, 2nd Int. Conf. Bioenvironment, Biodiversity and Renewable Energies BIONATURE, Venice, 2011, pp. 47–50.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • I. Yu. Bakunina
    • 1
  • O. I. Nedashkovskaya
    • 1
  • S. B. Kim
    • 3
  • T. N. Zvyagintseva
    • 1
  • V. V. Mikhailov
    • 1
    • 2
  1. 1.Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern BranchRussian Academy of SciencesVladivostokRussia
  2. 2.Far Eastern Federal UniversityVladivostokRussia
  3. 3.Chungnam National UniversityDaejeonSouth Korea

Personalised recommendations