Skip to main content
Log in

Effect of oxylipins on Neurospora crassa growth and differentiation

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The effect of the natural oxylipins 3(R)-hydroxy-(5Z,8Z,11Z,14Z)-eicosatetraenoic acid (3-HETE) and 18-hydroxy-(9Z,12Z)-octadecadienoic acids (18-HODE) on the growth and hypha aggregation, as well as on some light-depending processes, such as carotenoid biosynthesis, protoperithecia formation (sexual cycle), and conidiation (asexual cycle), of the ascomycete Neurospora crassa was studied. Hypha aggregation and growth slowdown were induced by 3-HETE, 18-HODE, and linoleic acid. At concentrations from 5 to 50 μM, these compounds had no significant effect on the light-induced carotenogenesis. At the same time, these 3-HETE and 18-HODE concentrations, unlike linoleic acid, induced the formation of protoperithecia in the dark. At the concentration of 5 μM, an additive effect of oxylipins and light was revealed. The studied oxylipins had different effects on the asexual reproduction of N. crassa: 3-HETE induced conidiation in the dark, whereas 18-HODE induced conidiation in the light. The possible involvement of oxylipins in the regulation of the processes of sexual and asexual reproduction of N. crassa is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreou, A., Brodhun, F., and Feussner, I., Biosynthesis of Oxylipins in Non-Mammals, Prog. Lipid Res., 2009, vol.48, no. 3–4, pp. 148–170.

    Article  PubMed  CAS  Google Scholar 

  2. Brodhun, F. and Feussner, I., Oxylipins in Fungi, FEBS J., 2011, vol. 278, no. 7, pp. 1047–1063.

    Article  PubMed  CAS  Google Scholar 

  3. Mysyakina, I.S. and Feofilova, E.P., The Role of Lipids in the Morphogenetic Processes of Mycelial Fungi, Microbiology, 2011, vol. 80, no. 3, pp. 297–306.

    Article  CAS  Google Scholar 

  4. Groza, N.V., Myagkova, G.I., Gessler, N.N., and Belozerskaya, T.A., Fungal Oxilipins, Mikol. Fitopatol., 2010, vol. 44, no. 4, pp. 285–298.

    CAS  Google Scholar 

  5. Tsitsigiannis, D. and Keller, N.P., Oxylipins as Development and Host-Fungal Communication Signals, Trends Microbiol., 2007, vol. 15, no. 3, pp. 109–117.

    Article  PubMed  CAS  Google Scholar 

  6. Horowitz Brown, S., Zarnowski, R., Sharpee, W.C., and Keller, N.P., Morphological Transitions Governed by Density Dependence and Lipoxygenase Activity in Aspergillus flavus, Appl. Environ. Microbiol., 2008, vol. 74, no. 18, pp. 5674–5685.

    Article  PubMed  CAS  Google Scholar 

  7. Ivanov, I., Heydeck, D., Hofheinz, K., Roffeis, J., O’Donnell, V.B., Kuhn, H., and Walther, M., Molecular Enzymology of Lipoxygenases, Arch. Biochem. Biophys., 2010, vol. 503, no. 2, pp. 161–174.

    Article  PubMed  CAS  Google Scholar 

  8. Filippovich, S.Yu., Rybakov, Yu.A., Afanas’eva, T.P., Bachurina, G.P., Lukina, G.P., Ezhova, I.E., Nosova, A.V., Artyushkina, T.V., Sineokii, S.P., and Kritskii, M.S., Characterization of Lipoxygenase from Fungi of the Genus Mortierella, Appl. Biochem. Microbiol., 2001, vol. 37, no. 5, pp. 473–479.

    Article  CAS  Google Scholar 

  9. Kock, J.L., Strauss, C.J., Pohl, C.H., and Nigam, S., The Distribution of 3-Hydroxy Oxilipins in Fungi, Prostaglandins Other Lipid Mediat., 2003, vol. 71, no. 3–4, pp. 85–96.

    Article  PubMed  CAS  Google Scholar 

  10. Kock, J.L.F., Sebolai, O.M., Pohl, C.H., van Wyk, P.W.J., and Lodoto, E.J., Oxylipin Studies Expose Aspirin as Antifungal, FEMS Yeast Res., 2007, vol. 7, no. 8, pp. 1207–1217.

    Article  PubMed  CAS  Google Scholar 

  11. Poirier, Y., Antonenkov, V.D., Glumoff, T., and Hiltunen, J.K., Peroxisomal β-Oxidation-A Metabolic Pathway with Multiple Functions, Biochim. Biophys. Acta, 2006, vol. 1763, no. 12, pp. 1413–1426.

    Article  PubMed  CAS  Google Scholar 

  12. Maggio-Hall, L.A. and Keller, N.P., Mitochondrial Beta-Oxidation in Aspergillus nidulans, Mol. Microbiol., 2004, vol. 54, no. 5, pp. 1173–1185.

    Article  PubMed  CAS  Google Scholar 

  13. Van Dyk, M.S., Kock, J.L.F., Coetzee, D.J., Augustyn, O.P.H., and Nigam, S., Isolation of a Novel Aspirin Sensitive Arachidonic Acid Metabolite 3-Hydroxy-5,8,11,14-Eicosatetraenoic Acid (3-HETE) from the Yeast Dipodascopsis uninucleata UOFS-Y128, FEBS Lett., 1991, vol. 283, nos. 2–3, pp. 195–198.

    PubMed  Google Scholar 

  14. Venter, P., Kock, J.L.F., Sravan, K.G., Botha, A., Coetzee, D.J., Botes, P.J., Bhatt, R.K., Falck, R., Schewe, T., and Nigam, S., Production of 3-Hydroxy-Polyenoic Fatty Acids by the Yeast Dipodascopsis uninucleata, Lipids, 1997, vol. 32, no. 12, pp. 1277–1283.

    Article  PubMed  CAS  Google Scholar 

  15. Groza, N.V., Ivanov, I.V., Romanov, S.G., Shevchenko, V.P., Myasoedov, N.F., Myagkova, G.I., and Nigam, S., Synthesis of Tritium Labelled 3(R)-HETE and 3(R),18(R/S)-DiHETE through a Common Synthetic Route, J. Labelled Comp. Radiopharm., 2004, vol. 47, no. 1, pp. 11–17.

    Article  CAS  Google Scholar 

  16. Groza, N.V., Ivanov, I.V., Romanov, S.G., Myagkova, G.I., and Nigam, S., A Novel Synthesis of 3(R)-HETE, 3(R)-HTDE and Enzymatic Synthesis of 3(R),15(S)-DiHETE, Tetrahedron, 2002, vol. 58, no. 49, pp. 9859–9863.

    Article  CAS  Google Scholar 

  17. Eschenfeldt, W.H., Zhang, Y., Samaha, H., Stols, L., Eirich, L.D., Wilson, C.R., and Donnelly, M., Transformation of Fatty Acids Catalyzed by Cytochrome P450 Monooxygenase Enzymes of Candida tropicalis, Appl. Environ. Microbiol., 2003, vol. 69, no. 10, pp. 5992–5999.

    Article  PubMed  CAS  Google Scholar 

  18. Wadman, M.W., de Vries, R.P., Kalkhove, S.I.C., Veldink, G.A., and Vliegenthart, J.F.G., Characterization of Oxylipins and Dioxygenase Genes in the Asexual Fungus Aspergillus niger, BMC Microbiol., 2009, vol. 9, p. 59.

    Article  PubMed  Google Scholar 

  19. Nukina, M., Sassa, T., Ikeda, M., Takahashi, K., and Toyota, S., Linoleic Acid Enhanced Perithecial Production in Neurospora crassa, Agric. Biol. Chem., 1981, vol. 45, no. 10, pp. 2371–2373.

    Article  CAS  Google Scholar 

  20. Thieringer, R. and Kunau, W., β-Oxidation System of the Filamentous Fungus Neurospora crassa, J. Biol. Chem., 1991, vol. 266, no. 20, pp. 13118–13123.

    PubMed  CAS  Google Scholar 

  21. Tsitsigiannis, D.I., Kowieski, T.M., Zarnowski, R., and Keller, N.P., Three Putative Oxylipin Biosynthetic Genes Integrate Sexual and Asexual Development in Aspergillus nidulans, Microbiology (UK), 2005, vol. 151, no. 6, pp. 1809–1821.

    Article  CAS  Google Scholar 

  22. Kritskii, M.S., Belozerskaya, T.A., Sokolovskii, V.Yu., and Filippovich, S.Yu., Photoreceptor Apparatus of the Fungus Neurospora crassa, Mol. Biol., 2005, vol. 39, no. 4, pp. 514–528.

    Article  Google Scholar 

  23. Groza, N.V., Ivanov, I.V., Golovanov, A.B, and Myagkova, G.I., Chemical Synthesis of Omega-Hydroxyderivatives of Plant Fatty Acid Subatrates, Vestnik MITKhT, 2006, vol. 1, no. 4, pp. 29–32.

    Google Scholar 

  24. Blight, E.G. and Dyer, W.J., A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol., 1959, vol. 37, no. 8, pp. 911–917.

    Article  Google Scholar 

  25. Davis, R.H. and de Serres, F.J., Genetic and Microbiological Research Techniques for Neurospora crassa, Meth. Enzymol., Tabor, H. and Tabor, C.W., Eds., New York: Academic, 1970, vol. 17, part A, pp. 79–145.

    Google Scholar 

  26. Belozerskaya, T.A., Ershov, Yu.V., Petrova, N.E., Dmitrovskii, A.A., and Kritskii, M.S., Carotenoid Biosynthesis Activation Induced by Genetic Damage to Transport Mechanisms in Plasma Membranes of Fungal Cells, Doklady Biochem., 1998, vol. 359, no. 4, pp. 37–39.

    Google Scholar 

  27. Filippovich, S.Yu., Bachurina, G.P., and Kritskii, M.S., Effect of 5-Azacytidine on the Light-Sensitive Formation of Sexual and Asexual Reproductive Structures in wc-1 and wc-2 Mutants of Neurospora crassa, Appl. Biochem. Microbiol., 2004, vol. 40, no. 4, pp. 398–403.

    Article  CAS  Google Scholar 

  28. Aguirre, J., Rhos-Momberg, M., Hewitt, D., and Hansberg, W., Reactive Oxygen Species and Development of Microbial Eukaryotes, Trends Microbiol., 2005, vol. 13, no. 3, pp. 111–118.

    Article  PubMed  CAS  Google Scholar 

  29. Calvo, A.M., The VeA Regulatory System and Its Role in Morphological and Chemical Development in Fungi, Fungal Genet. Biol., 2008, vol. 45, no. 7, pp. 1053–1061.

    Article  PubMed  CAS  Google Scholar 

  30. Tsitsigiannis, D.I., Kowieski, T.M., Zarnowski, R., and Keller, N.P., Endogenous Lipogenic Regulators of Spore Balance in Aspergillus nidulans, Eukaryot. Cell, 2004, vol. 3, no. 6, pp. 1398–1411.

    Article  PubMed  CAS  Google Scholar 

  31. Goodrich-Tanrikulu, M., Howe, K., Stafford, A., and Nelson, M.A., Changes in Fatty Acid Composition of Neurospora crassa Accompany Sexual Development and Ascospore Germination, Arch. Microbiol., 1998, vol. 144, no. 7, pp. 1713–1720.

    CAS  Google Scholar 

  32. Bayram, O., Krappmann, S., Seiler, S., Vogt, N., and Braus, G.H., Neurospora crassa ve-1 Affects Asexual Conidiation, Fungal Genet. Biol., 2008, vol. 45, no. 2, pp. 127–138.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Belozerskaya.

Additional information

Original Russian Text © N.N. Gessler, S.Yu. Filippovich, G.P. Bachurina, N.V. Groza, E.A. Dorodnikova, T.A. Belozerskaya, 2012, published in Mikrobiologiya, 2012, Vol. 81, No. 5, pp. 587–593.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gessler, N.N., Filippovich, S.Y., Bachurina, G.P. et al. Effect of oxylipins on Neurospora crassa growth and differentiation. Microbiology 81, 542–548 (2012). https://doi.org/10.1134/S0026261712050074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261712050074

Keywords

Navigation