Skip to main content
Log in

Formation of diacylglyceryltrimethylhomoserines in the surface culture of the basidiomycete Flammulina velutipes

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Betaine-type lipids—diacylglyceryltrimethylhomoserines (DGTS)—were revealed in the mycelium of the basidial fungus Flammulina velutipes obtained by surface cultivation on agarized malt extract. DGTS accumulation was shown to occur at the late stages of culture development under deficiency of a complex of nutrients, including nitrogen, phosphorus, potassium, and trace elements. Induction of the synthesis of betaine lipids in F. velutipes occurred against the background of a decreased rate of growth of the vegetative mycelium, formation of monilioid hyphae, and inhibition of fructification. The relationship between DGTS formation and the environmental factors (temperature, illumination) was studied. It was established that the most active DGTS accumulation occurred at 15°C in the dark.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown, A.E. and Elovson, J., Isolation and Characterization of a Novel Lipid, 1(3),2-Diacylglyceryl-(3)-O-4′-(N,N,N-Trimethyl)Homoserine, from Ochromonas danica, Biochemistry, 1974, vol. 13, pp. 3476–3482.

    Article  PubMed  CAS  Google Scholar 

  2. Sato, N., Betaine Lipids, Bot. Mag., 1992, vol. 105, pp. 185–197.

    Article  CAS  Google Scholar 

  3. Dembitsky, V.M., Betaine Ether-Linked Glycerolipids: Chemistry and Biology, Prog. Lipid Res., 1996, vol. 35, pp. 1–51.

    Article  PubMed  CAS  Google Scholar 

  4. López-Lara, I.M., Sohlenkamp, C., and Geiger, O., Membrane Lipids in Plant-Associated Bacteria: Their Biosyntheses and Possible Functions, MPMI, 2003, vol. 16, pp. 567–579.

    Article  PubMed  Google Scholar 

  5. Yamada, T.A. and Nozawa, Y., An Unusual Lipid in the Human Pathogenic Fungus Epidermophyton floccosum, Biochim. Biophys. Acta, 1979, vol. 57, pp. 433–439.

    Google Scholar 

  6. Istokovics, A., Morita, N., Izumi, K., Hoshino, T., Yumoto, I., Sawada, M.T., Ishizaki, K., and Okuyama, H., Neutral Lipids, Phospholipids, and a Betaine Lipid of the Snow Mold Fungus Microdochium nivale, Can. J. Microbiol., 1998, vol. 44, pp. 1051–1059.

    CAS  Google Scholar 

  7. Kotlova, E.R. and Popov, E.S., Distribution of Betaine Lipids and Phosphatidylcholines in Ascomycetes, Mikol. Fitopatol., 2005, vol. 39, no. 4, pp. 68–77.

    CAS  Google Scholar 

  8. Vaskovsky, V.E., Khotimchenko, S.V., and Benson, A.A., Identification of Diacylglycero-4′-O-(N,N,N-Trimethyl)Homoserine in Mushrooms, Lipids, 1991, vol. 26, pp. 254–256.

    Article  Google Scholar 

  9. Dembitsky, V.M., Shubina, E.E., and Kashin, A.G., Phospholipid and Fatty Acid Compositions of Some Basidiomycetes, Phitochemistry, 1992, vol. 31, pp. 845–849.

    Google Scholar 

  10. Künzler, K. and Eichenberger, W., Betaine Lipids and Zwitterionic Phospholipids in Plants and Fungi, Phytochemistry, 1997, vol. 46, pp. 883–892.

    Article  PubMed  Google Scholar 

  11. Vaskovsky, V.E., Khotimchenko, S.V., and Boolukh, E.M., Diacylglycerotrimethylhomoserine and Phosphatidylcholine in Mushrooms, Phytochemistry, 1998, vol. 47, pp. 755–760.

    Article  CAS  Google Scholar 

  12. Moore, T.S., Du, Z., and Chen, Z., Membrane Lipid Biosynthesis in Chlamydomonas reinhardtii. In vitro Biosynthesis of Diacylglyceryltrimethylhomoserine, Plant Physiol., 2001, vol. 125, pp. 423–429.

    Article  PubMed  CAS  Google Scholar 

  13. Klug, R.M. and Benning, C., Two Enzymes of Diacylglyceryl-O-4-(N,N,N,-Trimethyl)-Homoserine Biosynthesis Are Encoded by btaA and btaB in the Purple Bacterium Rhodobacter sphaeroides, Plant Biol., 2001, vol. 98, pp. 5910–5915.

    CAS  Google Scholar 

  14. Riekhof, W.R., Sears, B.B., and Benning, C., Annotation of Genes Involved in Glycerolipid Biosynthesis in Chlamydomonas reinhardtii: Discovery of the Betaine Lipid Synthase BTA1Cr, Eukaryot. Cell, 2005, vol. 4, pp. 242–252.

    Article  PubMed  CAS  Google Scholar 

  15. Khotimchenko, S.V., Klochkova, N.G., and Vaskovsky, V.E., Polar Lipids of Marine Macrophytic Algae as Chemotaxonomic Markers, Biochem. Syst. Ecol., 1990, vol. 18, pp. 93–101.

    Article  CAS  Google Scholar 

  16. Benning, C., Huang, Z.H., and Gage, D.A., Accumulation of a Novel Glycolipid and a Betaine Lipid in Cells of Rhodobacter sphaeroides Grown under Phosphate Limitation, Arch. Biochem. Biophys., 1995, vol. 317, pp. 103.

    Article  PubMed  CAS  Google Scholar 

  17. Zavaleta-Pastor, M., Sohlenkamp, C., Gao, J.L., Guan, Z., Zaheer, R., Finan, T.M., Raetz, C.R., López-Lara, I.M., and Geiger, O., Sinorhizobium meliloti Phospholipase C Required for Lipid Remodeling during Phosphorus Limitation, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, pp. 302–307.

    Article  PubMed  CAS  Google Scholar 

  18. Kotlova, E.R. and Sinyutina, N.F., Changes in the Content of Individual Lipid Classes of a Lichen Peltigera aphthosa during Dehydration and Subsequent Rehydration, Russ. J. Plant Physiol., 2005, vol. 52, no. 1, pp. 35–42.

    Article  CAS  Google Scholar 

  19. Kotlova, E.R., Senik, S.V., Kücher, T., Shavarda, A.L., Kiyashko, A.A., Psurtseva, N.V., and Zubarev, R.A., Alterations in the Composition of Membrane Glycero- and Sphingolipids in the Course of Flammulina velutipes Surface Culture Development, Microbiology, 2009, vol. 78, no. 2, pp. 193–201.

    Article  CAS  Google Scholar 

  20. Bis’ko, N.A., Bukhalo, A.S., Vasser, S.P., Dudka, I.A., Kulesh, M.D., Solomko, E.F., and Shevchenko, S.V., Vysshie s“edobnye bazidiomitsety v poverkhnostnoi i glubinnoi kul’ture (Edible Higher Basidiomycetes in Surface and Submerged Culture), Kiev: Nauk. Dumka, 1983.

    Google Scholar 

  21. Nichols, B.W., Separation of the Lipids of Photosynthetic Tissues: Improvements in Analysis by Thin-Layer Chromatography, Biochem. Biophys. Acta, 1963, vol. 70, pp. 417–425.

    Article  PubMed  CAS  Google Scholar 

  22. Keits, M., Techniques of Lipidology: Isolation, Analysis, and Identification of Lipids, Amsterdam: Elsevier, 1972.

    Google Scholar 

  23. Opekunova, M.G., Arestova, I.Yu., and Elsunova, E.Yu., Metody fiziko-khimicheskogo analiza pochv i rastenii. Metodicheskie ukazaniya (Methods of Physicochemical Analysis of Soil and Plants. Methodic Recommendations), St. Petersburg: Izd-vo SPbGU, 2002.

    Google Scholar 

  24. Stalpers, J.A., Identification of Wood-Inhabiting Aphillophorales in Pure Culture, Stud. Mycol., 1978, no. 16.

  25. Parmeter, J.R., Rhizoctonia solani, Biology and Pathology, Univ. of California Press, 1970.

  26. Matrosova, E.V., Cytological and Immunoenzyme Analysis of the Species of the Genus Agaricus Fr. emend. Karst., Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: Moscow State Univ., 2007.

    Google Scholar 

  27. Sato, N. and Murata, N., Transition of Lipid Phase in Aqueous Dispersions of Diacylglyceryltrimethylhomoserine, Biochem. Biophys. Acta, 1991, vol. 1082, pp. 108–111.

    Article  PubMed  CAS  Google Scholar 

  28. Rozentsvet, O.A., Lipid Composition of Plants as an Indicator of Their Adaptive Capacities for Various Ecological Conditions, Extended Abstract of Doctoral (Biol.) Dissertation, Tolyatti: Inst. Ecol. Volga Basin, 2006.

    Google Scholar 

  29. Kiseleva, M.A., Metabolism of Membrane Lipids in Free-Living and Symbiotic Pseudococcomyxa Green Algae under Phosphorus Limitation, Extended Abstract of Cand. Sci. (Biol.) Dissertation, St.-Petersburg: Botan. Inst., Russ. Acad. Sci., 2008.

    Google Scholar 

  30. Dong, C.-H. and Yao, Y.-J., Nutritional Requirements of Mycelial Growth of Cordyceps sinensis in Submerged Culture, Appl. Microbiol., 2005, vol. 99, pp. 483–492.

    Article  CAS  Google Scholar 

  31. Hayes, A.W., Elwanda, P.W., and Patricia, A.K., Environmental and Nutritional Factors Affecting the Production of Rubrotoxin B by Penicillium rubrum Stoll, Appl. Microbiol., 1970, vol. 20, pp. 469–473.

    PubMed  CAS  Google Scholar 

  32. Moustafa, A., Nutrition and the Development of Mushrooms Flavour in Agaricus campestris Mycelium, Appl. Microbiol., 1960, vol. 8, pp. 63–67.

    PubMed  CAS  Google Scholar 

  33. Gao, L. and Liu, X., Effects of Carbon Concentrations and Carbon to Nitrogen Ratios on Sporulation of Two Biological Control Fungi as Determined by Different Culture Methods, Mycopathologia, 2010, vol. 169, pp. 475–481.

    Article  PubMed  CAS  Google Scholar 

  34. Shivrina, A.N., Nizkovskaya, O.P., Falina, N.N., Mattison, N.L., and Efimenko, O.M., Biosinteticheskaya deyatel’nost’ vysshikh gribov (Biosynthetic Activity of Higher Fungi), Leningrad: Nauka, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Senik.

Additional information

Original Russian Text © S.V. Senik, E.R. Kotlova, A.V. Novikov, A.L. Shavarda, N.V. Psurtseva, 2012, published in Mikrobiologiya, 2012, Vol. 81, No. 5, pp. 578–586.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senik, S.V., Kotlova, E.R., Novikov, A.V. et al. Formation of diacylglyceryltrimethylhomoserines in the surface culture of the basidiomycete Flammulina velutipes . Microbiology 81, 534–541 (2012). https://doi.org/10.1134/S0026261712040145

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261712040145

Keywords

Navigation