Skip to main content
Log in

Ultramicrobacteria: Formation of the concept and contribution of ultramicrobacteria to biology

  • Review
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Ultramicrobacteria (UMB) are species of the domain Bacteria characterized by very small sizes of proliferating cells (less than 0.1 μm3 in volume) and small genomes (3.2 to 0.58 Mb). Some authors use the term nanobacteria as a synonym of UMB. Several tens of UMB species have been isolated from various natural habitats: sea water, soil, silt, Greenland ice sheet, permafrost soils, and intestines of humans and insects. Under laboratory conditions, they are cultivated on different nutrient media. In the second prokaryotic domain, the Archaea, ultrasmall forms (ultramicroarchaea) have also been described, including nanoarchaea (members of the genus Nanoarchaeum) with a cell volume of less than 0.1 μm3. The term nanobacteria is used in the literature also to denote ultrasmall bacterium-like particles occurring in rocks, sands, soils, deep sub-surface layers, meteorites, and clinical samples. The systematic position and the capacity for self-reproduction of these particles are still unclear. The cultured UMB forms are characterized by highly diverse morphology, ultrastructural organization, physiology, biochemistry, and ecology. UMB form three groups according to the type of cell wall structure and the reaction to Gram staining: (1) gram-negative, (2) gram-positive, and (3) cell wall-lacking. Their cells divide by constriction, septation, or budding. The unique processes performed by UMB are dehalorespiration and obligate or facultative epibiotic parasitism. The UMB that synthesize organic compounds in ocean waters with the involvement of proteorhodopsin play a great role in the biosphere. UMB have been found in seven large phylogenetic groups of prokaryotes, where their closest relatives are organisms with larger cells typical of bacteria, which is evidence of the polyphyletic origin of the currently known UMB species and the reductive mode of their evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Courties, C., Perasso, R., Chretiennot-Dinet, M.-J., Goui, M., Guillou, L., and Troussellier, M., Phylogenetic Analysis and Genome Size of Ostreococcus tauri (Chlorophyta, Prasinophyceae), J. Physiol., 1998, vol. 34, pp. 844–849.

    CAS  Google Scholar 

  2. Matsuzaki, M., Misumi, O., Shin I.T., et al., Genome Sequence of the Ultrasmall Unicellular Red Alga Cyanidioschyzon merolae 100, Nature, 2004, vol. 428, pp. 653–657.

    Article  PubMed  CAS  Google Scholar 

  3. Cavicchioli, R. and Ostrowski, M., Ultramicrobacteria, Encyclopedia of Life Sciences, 2003, www.els.net. pp. 1–8.

  4. Lartique, C., Glass, J.I., Alperovich, N., Pieper, R., Parmar, P.P., Hutchison, C.A., III, Smith, H.O., and Venter, J.C., Genome Transplantation in Bacteria: Changing One Species to Another, Science, 2007, vol. 317, pp. 632–638.

    Article  Google Scholar 

  5. Gibson, D.G., Lartique, C., Noskov, V.N., et al., Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome, Science, 2010, vol. 329, pp. 52–66.

    Article  PubMed  CAS  Google Scholar 

  6. Torrella, F. and Morita, R.Y., Microcultural Study of Bacterial Size Changes and Microcolony and Ultramicrocolony Formation by Heterotrophic Bacteria in Seawater, Appl. Environ. Microbiol., 1981, vol. 41, pp. 518–527.

    PubMed  CAS  Google Scholar 

  7. Bae, H.C., Cota-Robles, E.H., and Casida, L.E., Jr., Microflora of Soil as Viewed by Transmission Electron Microscopy, Appl. Microbiol., 1972, vol. 23, pp. 637–648.

    PubMed  CAS  Google Scholar 

  8. Velimirov, B., Nanobacteria, Ultramicrobacteria and Starvation Forms: A Search for the Smallest Metabolizing Bacterium, Microbes and Environments, 2001, vol. 16, pp. 67–77.

    Article  Google Scholar 

  9. Schut, F., Prins, R.A., and Gottschal, J.C., Oligotrophy and Pelagic Marine Bacteria: Facts and Fiction, Aquat. Microb. Ecol., 1997, vol. 12, pp. 177–202.

    Article  Google Scholar 

  10. Panikov, N.S., Contribution of Nanosized Bacteria to the Total Biomass and Activity of a Soil Microbial Community, Adv. Appl. Microbiol., 2004, vol. 57, pp. 245–296.

    Article  Google Scholar 

  11. MacDonell, M.T. and Hood, M.A., Isolation and Characterization of Ultramicrobacteria from a Gulf Coast Estuary, Appl. Environ. Microbiol., 1982, vol. 43, pp. 566–571.

    PubMed  CAS  Google Scholar 

  12. Schut, F., Gottshal, J.C., and Prins, R.A., Isolation and Characterization of the Marine Ultramicrobacterium Sphingomonas sp. Strain RB2256, FEMS Microbiol. Rev., 1997, vol. 20, pp. 363–369.

    Article  CAS  Google Scholar 

  13. Dmitriev, V.V., Suzina, N.E., Rusakova, T.G., Gilichinskii, D.A., and Duda, V.I., Ultrastructural Characteristics of Natural Forms of Microorganisms Isolated from Permafrost Grounds of Eastern Siberia by the Method of Low-Temperature Fractionation, Dokl. Biol. Sci., 2001, vol. 378, p. 304.

    Article  PubMed  CAS  Google Scholar 

  14. Dmitriev, V.V., Suzina, N.E., Barinova, E.S., Duda, V.I., and Boronin, A.M., An Electron Microscopic Study of the Ultrastructure of Microbial Cells in Extreme Biotopes in situ, Microbiology, 2004, vol. 73, no. 6, pp. 716–723.

    Article  Google Scholar 

  15. Dmitriev, V.V., Suzina, N.E., Rusakova, T.G., Petrov, P.Yu., Oleinikov, R.R., Esikova, T.Z., Kholodenko, V.P., Duda, V.I., and Boronin, A.M., Electron Microscopic Detection and in situ Characterization of Bacterial Nanoforms in Extreme Biotopes, Microbiology, 2008, vol. 77, no. 1, pp. 39–46.

    Article  CAS  Google Scholar 

  16. Huber, H., Hohn, M.J., Rache, R., Fuchs, T., Wimmer, V.C., and Stetter, K.O., A New Phylum of Archaea Represented by a Nanosized Hyperthermophilic Symbiont, Nature, 2002, vol. 417, pp. 63–67.

    Article  PubMed  CAS  Google Scholar 

  17. Baker, B.J., Comolli, L.R., Dick, G.J., Hauser, L.J., Hyatt, D., Dill, B.D., Land, M.L., VerBerkmoes, N.C., Hettich, R.L., and Banfield, J.F., Enigmatic, Ultrasmall, Uncultivated Archaea, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, pp. 8806–8811.

    Article  PubMed  CAS  Google Scholar 

  18. Morita, R.Y., Bioavailability of Energy and Its Relationship to Growth and Starvation Survival in Nature, Can. J. Microbiol., 1988, vol. 34, pp. 436–441.

    Article  CAS  Google Scholar 

  19. Folk, R.L., Nannobacteria and the Precipitation of Carbonate in Unusual Environments, Sediment. Geol., 1999, vol. 126, pp. 47–55.

    Article  CAS  Google Scholar 

  20. Kajander, E.O. and Ciftcioglu, N., Nanobacteria—An Alternative Mechanism for Pathogenic Intra- and Extracellular Calcification and Stone Formation, Proc. Natl. Acad. Sci. USA, 1998, pp. 8274–8279.

  21. Sieburth, J.M.N., Smetacek, V., and Lenz, J., Pelagic Ecosystem Structure: Heterotrophic Compartments of the Plankton and Their Relationship to Plankton Size Fractions, Limnol. Oceanogr., 1978, vol. 23, pp. 1256–1263.

    Article  Google Scholar 

  22. Haller, C.M., Röleke, S., Vybiral, D., Witte, A., and Velimirov, B., Investigation of 0.2 μm Filterable Bacteria from Western Mediterranean Sea Using a Molecular Approach: Dominance of Potential Starvation Forms, FEMS Microbiol. Ecol., 2000, vol. 31, pp. 153–161.

    PubMed  CAS  Google Scholar 

  23. Rappé, M.S., Connon, S.A., Vergin, K.L., and Giovannoni, S.J., Cultivation of the Ubiquitous SAR11 Marine Bacterioplankton Clade, Nature, 2002, vol. 48, pp. 630–633.

    Article  Google Scholar 

  24. Giovannoni, S.J., Bibbs, L., Cho, J.-C., Staples, M.D., Desiderio, R., Vergin, K.L., Rappé, M.S., Laney, S., Barofsky, D.F., and Mathur, E., Proteorhodopsin in the Ubiquitous Marine Bacterium SAR11, Nature, 2005a, vol. 438, pp. 82–85.

    Article  PubMed  CAS  Google Scholar 

  25. Giovannoni, S.J., Tripp, H.J., and Givan, S., et al., Genome Streamlining in a Cosmopolitan Oceanic Bacterium, Science, 2005b, vol. 309, pp. 1242–1245.

    Article  PubMed  CAS  Google Scholar 

  26. Cavicchioli, R., Ostrowski, M., Fegatella, F., Goodchild, A., and Guixa-Boixereu, N., Life under Nutrient Limitation in Oligotrophic Marine Environments: An Ecophysiological Perspective of Sphingopyxis alaskensis (Formerly Sphingomonas alaskensis), Microb. Ecology, 2003, vol. 45, no. 3, pp. 203–217.

    CAS  Google Scholar 

  27. Miyoshi, T., Iwatsuki, T., and Naganuma, T., Phylogenetic Characterization of 16S rRNA Gene Clones from Deep-Groundwater Microorganisms that Pass through 0.2-Micrometer-Pore-Size Filters, Appl. Environ. Microbiol., 2005, vol. 71, pp. 1084–1088.

    Article  PubMed  CAS  Google Scholar 

  28. Silbaq, F.S., Viable Ultramicrocells in Drinking Water, J. Appl. Microbiol., 2009, vol. 106, pp. 106–117.

    Article  PubMed  CAS  Google Scholar 

  29. Miteva, V.I. and Brenchley, J.E., Detection and Isolation of Ultrasmall Microorganisms from a 120000-Year-Old Greenland Glacier Ice Core, Appl. Environ. Microbiol., 2005, vol. 71, pp. 7806–7818.

    Article  PubMed  CAS  Google Scholar 

  30. Loveland-Curtze, J., Miteva, V., and Brenchley, J., Novel Ultramicrobacterial Isolates from a Deep Greenland Ice Core Represent a Proposed New Species, Chryseobacterium greenlandense sp. nov., Extremophiles, 2010, vol. 14, no. 1, pp. 61–69.

    Article  PubMed  CAS  Google Scholar 

  31. Loveland-Curtze, J., Miteva, V.I., and Brenchley, J.E., Herminiimonas glaciei sp. nov., a Novel Ultramicrobacterium from 3042 M Deep Greenland Glacial Ice, Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 1272–1277.

    Article  PubMed  CAS  Google Scholar 

  32. Balkwill, D.L. and Casida, L.E., Microflora of Soil as Viewed by Freeze-Etching, J. Bacteriol., 1973, vol. 114, pp. 1319–1327.

    PubMed  CAS  Google Scholar 

  33. Janssen, P.H., Schuhmann, A., Möschel, E., and Rainey, F.A., Novel Anaerobic Ultramicrobacteria Belonging to the Verrucomicrobiales Lineage of Bacterial Descent Isolated by Dilution Culture from Anoxic Rice Paddy Soil, Appl. Environ. Microbiol., 1997, vol. 63, pp. 1382–1388.

    PubMed  CAS  Google Scholar 

  34. Iizuka, T., Yamanaka, S., Nishiyama, T., and Hiraishi, A., Isolation and Phylogenetic Analysis of Aerobic Copiotrophic Ultramicrobacteria from Urban Soil, J. Gen. Appl. Microbiol., 1998, vol. 44, pp. 75–84.

    Article  PubMed  Google Scholar 

  35. Sahin, N., Gonzalez, J.M., Iizuka, T., and Hill, J.E., Characterization of Two Aerobic Ultramicrobacteria Isolated from Urban Soil and a Description of Oxalicibacterium solurbis sp. nov., FEMS Microbiol. Lett., 2010, vol. 307, pp. 25–29.

    Article  PubMed  CAS  Google Scholar 

  36. Rutz, B.A. and Kieft, T.L., Phylogenetic Characterization of Dwarf Archaea and Bacteria from a Semiarid Soil, Soil Biol. Biochem., 2004, vol. 36, pp. 825–833.

    Article  CAS  Google Scholar 

  37. Lysak, L.V., Lapygina, E.V., Konova, I.A., and Zvyagintsev, D.G., Quantity and Taxonomic Composition of Ultramicrobacteria in Soils, Microbiology, 2010, vol. 79, no. 3, p. 408.

    Article  CAS  Google Scholar 

  38. Urbano, P. and Urbano, F., Nanobacteria: Facts or Fancies?, PLoS Pathog., 2007, vol. 3, no. 5, e55, pp. 0567–0570.

    CAS  Google Scholar 

  39. Cisar, J.O., Xu, D.Q., Thompson, J., Swaim, W., Hu, L., and Kopecko, D.J., An Alternative Interpretation of Nanobacteria-Induced Biomineralization, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 11511–11515.

    Article  PubMed  CAS  Google Scholar 

  40. Hahn, M.W., Lunsdorf, H., Wu, Q., Shauer, M., Hofle, M.G., Boenigk, J., and Stadler, P., Isolation of Novel Ultramicrobacteria Classified as Actinobacteria from Five Freshwater Habitats in Europe and Asia, Appl. Environ. Microbiol., 2003, vol. 69, pp. 1442–1451.

    Article  PubMed  CAS  Google Scholar 

  41. May, H.D., Miller, G.S., Kjellerup, B.V., and Sovers, K.R., Dehalorespiration with Polychlorinated Biphenyls by an Anaerobic Ultramicrobacterium, Appl. Environ. Microbiol., 2008, vol. 74, pp. 2089–2094.

    Article  PubMed  CAS  Google Scholar 

  42. Geissinger, O., Herlemann, D.P.R., Mörshel, E., Maier, U.G., and Brune, A., The Ultramicrobacterium “Elusimicrobium minutum” gen. nov., sp. nov., the First Cultivated Representative of the Termite Group 1 Phylum, Appl. Environ. Microbiol., 2009, vol. 75, pp. 2831–2840.

    Article  PubMed  CAS  Google Scholar 

  43. Herlemann, D.P.R., Geissinger, O., Ikeda-Ohtsubo, W., Kunin, V., Sun, H., Lapidus, A., Hugenholtz, P., and Brune, A., Genomic Analysis of “Elusimicrobium minutum”, the First Cultivated Representative of the Phylum “Elusimicrobia” (Formerly Termite Group 1), Appl. Environ. Microbiol., 2009, vol. 75, pp. 2841–2849.

    Article  PubMed  CAS  Google Scholar 

  44. Duda, V.I., Suzina, N.E., Esikova, T.Z., Akimov, V.N., Oleinikov, R.R., Polivtseva, V.N., Abashina, T.N., Shorokhova, A.P., and Boronin, A.M., A Cytological Characterization of the Parasitic Action of Ultramicrobacteria NF1 and NF3 of the Genus Kaistia on Chemoorganotrophic and Phototrophic Bacteria, FEMS Microbiol. Ecol., 2009, vol. 69, pp. 180–193.

    Article  PubMed  CAS  Google Scholar 

  45. Suzina, N.E., Duda, V.I., Esikova, T.Z., Shorokhova, A.P., Gafarov, A.B., Oleinikov, R.R., Akimov, V.N., Abashina, T.N., Polivtseva, V.N., and Boronin, A.M., Novel Ultramicrobacteria, Strains NF4 and NF5, of the Genus Chryseobacterium: Facultative Epibionts of Bacillus subtilis, Microbiology, 2011, vol. 80, no. 4, pp. 535–548.

    Article  CAS  Google Scholar 

  46. Young, K.D., The Selective Value of Bacterial Shape, Microbiol. Mol. Biol. Rev., 2006, vol. 70, pp. 660–703.

    Article  PubMed  Google Scholar 

  47. Lambina, V.A., Afinogenova, A.V., Romai Penabad, S., Konovalova, S.M., and Pushkareva, A.P., Micavibrio admirandus gen. et sp. nov., Mikrobiologiya, 1982, vol. 51, pp. 114–117.

    CAS  Google Scholar 

  48. Gromov, B.V. and Mamkaeva, K.A., Proposal of the New Genus Vampirovibrio chlorellavorus for a Bacterium Formerly Assigned to Bdellovibrio, Mikrobiologiya, 1980, vol. 49, pp. 165–167.

    CAS  Google Scholar 

  49. Jurkevitch, E., Predatory Behaviors in Bacteria—Diversity and Transitions, Microbe, 2007, vol. 2, pp. 67–73.

    Google Scholar 

  50. Davidov, Y., Huchon, D., Kova, S., and Jurkevitch, E., A New α-Proteobacterial Clade of Bdellovibrio-like Predators: Implications for the Mitochondrial Endosymbiotic Theory, Environ. Microbiol., 2006, vol. 8, pp. 2179–2188.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Duda.

Additional information

Original Russian Text © V.I. Duda, N.E. Suzina, V.N. Polivtseva, A.M. Boronin, 2012, published in Mikrobiologiya, 2012, Vol. 81, No. 4, pp. 415–427.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duda, V.I., Suzina, N.E., Polivtseva, V.N. et al. Ultramicrobacteria: Formation of the concept and contribution of ultramicrobacteria to biology. Microbiology 81, 379–390 (2012). https://doi.org/10.1134/S0026261712040054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261712040054

Keywords

Navigation