Skip to main content
Log in

Degradation of 4-chlorobiphenyl and 4-chlorobenzoic acid by the strain Rhodococcus ruber P25

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The strain Rhodococcus ruber P25 utilizes 4-chlorobiphenyl (4CB) and 4-chlorobenzoic acid (4CBA) as sole carbon and energy sources. 4CB degradation by washed cells of strain P25 was accompanied by transient formation of 4CBA, followed by its utilization and release of equimolar amounts of chloride ions into the medium. The strain R. ruber P25 possessed active enzyme systems providing 4CBA degradation via the stages of formation of intermediates, para-hydroxybenzoate (PHBA) and protocatechuic acid (PCA), to compounds of the basic metabolism. The involvement of protocatechuate 4,5-dioxygenase in 4CBA degradation by rhodococci was revealed. It was established that the initial stage of 4CBA degradation (dehalogenation) in the strain R. ruber P25 was controlled by the fcbA and fcbB genes encoding 4-CBA-CoA ligase and 4-CBA-CoA dehalogenase, respectively. The genes encoding 4CBA dehalogenase components have not been previously detected and characterized in bacteria of the genus Rhodococcus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seo, J.-S., Keum, Y.-S., and Li, Q.X., Bacterial Degradation of Aromatic Compounds, Int. J. Environ. Res. Public. Health, 2009, vol. 6, pp. 278–309.

    Article  PubMed  CAS  Google Scholar 

  2. Quensen, J.F., III and Tiedje, J.M., Evolution of PCB Dechlorination in Sediments, in Methods in Biotechnology, vol. 2. Bioremediation Protocol, Sheehan, D., Ed., Totowa, NJ: Humana Press, 1998, pp. 257–273.

    Google Scholar 

  3. Pieper, D.H., Aerobic Degradation of Polychlorinated Biphenyls, Appl. Microbiol. Biotechnol., 2005, vol. 67, no. 2, pp. 170–191.

    Article  PubMed  CAS  Google Scholar 

  4. Maltseva, O.V., Tsoi, T.V., Quensen, J.F., III, Fucuda, M., and Tiedje, J.M., Degradation of Anaerobic Reductive Dechlorination Products of Aroclor 1242 by Four Aerobic Bacteria, Biodegradation, 1999, vol. 10, no. 5, pp. 363–371

    Article  PubMed  CAS  Google Scholar 

  5. Kim, S. and Picardal, F.W., A Novel Bacterium that Utilizes Monochlorobiphenyls and 4-Chlorobenzoate as a Growth Substrates, FEMS Microb. Lett., 2000, vol. 185, pp. 225–229.

    Article  CAS  Google Scholar 

  6. Rybkina, D.O., Plotnikova, E.G., Dorofeeva, L.V., Mironenko, Yu.L., and Demakov, V.A., A New Aerobic Gram-Positive Bacterium with a Unique Ability to Degrade ortho- and para-Chlorinated Biphenyls, Microbiology, 2003, vol. 72, no. 6, pp. 672–677.

    Article  CAS  Google Scholar 

  7. Adebusoye, S.A., Picardal, F.W., Ilori, M.O., Amund, O.O., and Fugua, C., Characterization of Multiple Novel Aerobic Polychlorinated Biphenyl (PCB)-Utilizing Bacterial Strains Indigenous to Contaminated Tropical African Soil, Biodegradation, 2008, vol. 19, pp. 145–159.

    Article  PubMed  CAS  Google Scholar 

  8. Chae, J.C., Kim, E., Park, S.H., and Kim, C.K., Catabolic Degradation of 4-Chlorobiphenyl by Pseudomonas sp. DJ-12 via Consecutive Reaction of Meta-Cleavage and Hydrolytic Dechlorination, Biotechnol. Bioprocess Eng., 2000, vol. 5, pp. 449–455.

    Article  CAS  Google Scholar 

  9. Arensdorf, J.J. and Focht, D.D., A meta Cleavage Pathway for 4-Chlorobenzoate, an Intermediate in the Metabolism of 4-Chlorobiphenyl by Pseudomonas cepacia P166, Appl. Environ. Microbiol., 1995, vol. 61, pp. 443–447.

    PubMed  CAS  Google Scholar 

  10. Egorova, D.O., Shumkova, E.S., Demakov, V.A., and Plotnikova, E.G., Degradation of Chlorinated Biphenyls and Products of Their Bioconversion by Rhodococcus sp. B7a Strain, Appl. Biochem. Microbiol., 2010, vol. 46, no. 6, pp. 592–598.

    Article  CAS  Google Scholar 

  11. Plotnikova, E.G., Rybkina, D.O., and Demakov, V.A., RF Patent No. 2262531 (2005).

  12. Plotnikova, E.G., Rybkina, D.O., Anan’ina, L.N., Yastrebova, O.V., and Demakov, V.A., Characteristics of Microorganisms Isolated from Technogenic Soils of the Kama Region, Russ. J. Ecol., 2006, no. 4, pp. 233–240.

  13. Tsoi, T.V., Zaitsev, G.M., Plotnikova, E.G., Kosheleva, I.A., and Boronin, A.M., Cloning and Expression of the Arthrobacter globiformis KZT-1 fcb Gene Encoding Dehalogenase (4-Chlorobenzoate-Hydroxylase) in E. coli, FEMS Microbiol. Lett., 1991, vol. 81, no. 2, pp. 165–170.

    Article  CAS  Google Scholar 

  14. Ausbel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K., Short Protocols in Molecular Biology. Third Edition, New York: Wiley, 1995.

    Google Scholar 

  15. Suvorova, M.M., Solyanikova, I.P., and Golovleva, L.A., Specificity of Catechol ortho-Cleavage during para-Toluate Degradation by Rhodococcus opacus 1cp, Biochemistry (Moscow), 2006, vol. 71, no. 12, pp. 1316–1323.

    PubMed  CAS  Google Scholar 

  16. Jadan, A.P., Moonen, M.J.H., Golovleva, L.A., Rietjens, I.M.C.M., and van Berkel, W.J.H., Biocatalytic Potential of p-Hydroxybenzoate Hydroxylase from Rhodococcus rhodnii 135 and Rhodococcus opacus 557, Add. Synth. Catal., 2004, vol. 346, pp. 367–375.

    Article  CAS  Google Scholar 

  17. Ono, K., Nozaki, M., and Hayaishi, O., Purification and Some Properties of Protocatechuate 4,5-Dioxygenase, Biochim. Biophys. Acta, 1970, vol. 220, no. 2, pp. 224–238.

    PubMed  CAS  Google Scholar 

  18. Stanier, R.Y. and Ingraham, J.L., Protocatechuate Acid Oxidase, J. Biol. Chem., 1954, vol. 210, pp. 799–808.

    PubMed  CAS  Google Scholar 

  19. Haddad, S., Eby, D.M., and Neidle, E.L., Cloning and Expression of the Benzoate Dioxygenase Genes from Rhodococcus sp. Strain 19070, Appl. Environ. Microbiol., 2001, vol. 67, pp. 2507–2514.

    Article  PubMed  CAS  Google Scholar 

  20. Rodrigues, J.L., Kachel, C.A., Aiello, M.R., Quensen, J.F., Maltseva, O.V., Tsoi, T.V., and Tiedje, J.M., Degradation of Aroclor 1242 Dechlorination Products in Sediments by Burkholderia xenovorans LB400 (ohb) and Rhodococcus sp. Strain RHA1 (fcb), Appl. Environ. Microbiol., 2006, vol. 72, pp. 2476–2482.

    Article  PubMed  CAS  Google Scholar 

  21. Thompson, J.D., Higgins, D.G., and Gibson, T.J., CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position Specific Gap Penalties and Weight Matrix Choice, Nucleic Acids Res., 1994, vol. 22, pp. 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  22. Van de Peer, Y. and de Wachter, R., TREECON for Windows a Software Package for the Construction and Drawing of Evolutionary Trees for the Microsoft Windows Environment, Comput. Appl. Biosci., 1994, vol. 10, no. 5, pp. 569–570.

    PubMed  Google Scholar 

  23. Furukawa, K. and Fujihara, H., Microbial Degradation of Polychlorinated Biphenyls: Biochemical and Molecular Features, J. Biosc. Bioeng., 2008, vol. 105, no. 5, pp. 433–449.

    Article  CAS  Google Scholar 

  24. Egorova, D.O. and Plotnikova, E.G., Gram-Positive Bacterial Degraders of Chlorinated Biphenyls Promising for Bioremediation of Contaminated Soils, Biotekhnologiya, 2009, no. 3, pp. 72–79.

  25. Witzig, R.H., Hecht, J.H.-J., and Pieper, D.H., Assessment of Toluene/Biphenyl Dioxygenase Gene Diversity in Benzene-Polluted Soils: Links between Benzene Biodegradation and Genes Similar to Those Encoding Isopropylbenzene Dioxygenases, Appl. Environ. Microbiol., 2006, vol. 72, pp. 3504–3514.

    Article  PubMed  CAS  Google Scholar 

  26. Field, J.A. and Sierra-Alvarez, R., Microbial Transformation of Chlorinated Benzoates, Rev. Environ. Sci. Biotechnol., 2008, vol. 7, pp. 191–210.

    Article  CAS  Google Scholar 

  27. Chang, K.H., Xiang, H., and Dunaway Mariano, D., Acyl-Adenylate Motif of the Acyl-Adenylate/Thioester-Forming Enzyme Superfamily: A SiteDirected Mutagenesis Study with the Pseudomonas sp. Strain CBS3 4-Chlorobenzoate: Coensyme A Ligase, Biochemistry, 1997, vol. 36, pp. 15650–15659.

    Article  PubMed  CAS  Google Scholar 

  28. Schmitz, A., Gartemann, K.H., Fiedler, J., Grund, E., and Eichenlaub, R., Cloning and Sequence Analysis of Genes for Dehalogenation of 4-Chlorobenzoate from Arthrobacter sp. Strain SU, Appl. Environ. Microbiol., 1992, vol. 58, pp. 4068–4071.

    PubMed  CAS  Google Scholar 

  29. Gartemann, K.H. and Eichenlaub, R., Isolation and Characterization of IS1409, an Insertion Element of 4-Chlorobenzoate-Degrading Arthrobacter sp. Strain TM1, and Development of a System for Transposon Mutagenesis, J. Bacteriol., 2001, vol. 183, pp. 3729–3736.

    Article  PubMed  CAS  Google Scholar 

  30. D’Argenio, D.A., Vetting, M.W., Ohlendorf, D.H., and Ornston, L.N., Substitution, Insertion, Deletion, Suppression, and Altered Substrate Specificity in Functional Protocatechuate 3,4-Dioxygenases, J. Bacteriol., 1999, vol. 181, pp. 6478–6487.

    PubMed  Google Scholar 

  31. Huang, Y., Zhao, K., Shen, X.-H., Jiang, C.-Y., and Liu, S.-J., Genetic and Biochemical Characterization of a 4-Hydroxybenzoate Hydroxylase from Corynebacterium glutamicum, Appl. Microbiol. Biotechnol., 2008, vol. 78, pp. 75–83.

    Article  PubMed  CAS  Google Scholar 

  32. Wolgel, S.A., Dege, J.E., Perkins-Olson, P.E., Juares-Garcia, C.H., Crawford, R.L., Munck, E., and Lipscomb, J.D., Purification and Characterization of Protocatechuate 2,3-Dioxygenase from Bacillus macerans: A New Extradiol Catecholic Dioxygenase, J. Bacteriol., 1993, vol. 175, pp. 4414–4426.

    PubMed  CAS  Google Scholar 

  33. Mampel, J., Providenti, M.A., and Cook, A.M., Protocatechuate 4,5-Dioxygenase from Comamonas testosteroni T-2: Biochemical and Molecular Properties of a New Subgroup within Class III of Extradiol Dioxygenases, Arch. Microbiol., 2005, vol. 183, pp. 130–139.

    Article  PubMed  CAS  Google Scholar 

  34. Ornston, L.N. and Parke, D., Properties of an Inducible Uptake System for β-Ketoadipate in Pseudomonas putida, J. Bacteriol., 1976, vol. 125, pp. 475–488.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Plotnikova.

Additional information

Original Russian Text © E.G. Plotnikova, I.P. Solyanikova, D.O. Egorova, E.S. Shumkova, L.A. Golovleva, 2012, published in Mikrobiologiya, 2012, Vol. 81, No. 2, pp. 159–170.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plotnikova, E.G., Solyanikova, I.P., Egorova, D.O. et al. Degradation of 4-chlorobiphenyl and 4-chlorobenzoic acid by the strain Rhodococcus ruber P25. Microbiology 81, 143–153 (2012). https://doi.org/10.1134/S0026261712020117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261712020117

Keywords

Navigation