Skip to main content
Log in

Isolation of bacteria of the genus Variovorax from the Thioploca mats of Lake Baikal

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Three strains of gram-negative bacteria were isolated from the mats of colorless sulfur bacteria Thioploca (Lake Baikal). The cells of new strains are motile with peritrichous flagella. Bacteria are aerobic, obligate chemoorganoheterotrophs growing within the pH range of 3.0–8.8 with the optimum at 8.3 and within the temperature range of 5–42°C with the optimum at 28°C. The cells contained menaquinones MK-8 H2 as the major component, as well as MK-7 H2 (less than 15%), while the content of ubiquinone Q8 was at least an order of magnitude lower. The G+C content of DNA in the new strains varied from 67.4 to 69.9 mol %. The level of DNA-DNA hybridization between the strains ranged from 80 to 94%, indicating that all the isolates belonged to one species. Analysis of the 16S rRNA gene nucleotide sequences of the type strain (Gen-Bank HQ400611) revealed close homologues among the known species of the genus Variovorax: 98% resemblance with the type strains of the species V. paradoxus, V. soli, V. ginsengisoli, and V. boronicumulans and 96% similarity with the type strain of V. dokdonensis. However, since the isolates differed significantly in the composition of fatty acids and isoprenoid quinones from the nearest neighbors in the phylogenetic tree, they cannot be related implicitly to the known species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suits, N.S. and Arthur, M.A., Bacterial Production of Anomalously High Dissolved Sulfate Concentrations in Peru Slope Sediments: Steady-State Sulfur Oxidation, or Transient Response to End of El Niño?, Deep-Sea Res., part 1, 2000, vol. 47, no. 10, pp. 1829–1853.

    Article  CAS  Google Scholar 

  2. Dermott, R. and Legner, M., Dense Mat-Forming Bacterium Thioploca ingrica (Beggiatoaceae) in Eastern Lake Ontario: Implications to the Benthic Food Web, J.Great Lakes Res., 2002, vol. 28, no. 4, pp. 688–697.

    Article  CAS  Google Scholar 

  3. Namsaraev, B.B., Dulov, L.E., Dubinina, G.A., Zemskaya, T.I., Granina, L.Z., and Karabanov, E.B., Role of Bacteria in Synthesis and Destruction of Organic matter in the Lake Baikal Microbial Mats, Mikrobiologiya, 1994, vol. 63, no. 2, p. 345–351.

    Google Scholar 

  4. Zemskaya, T.I., Chernitsyna, S.M., Dul’tseva, N.M., Sergeeva, V.N., Pogodaeva, T.V., and Namsaraev, B.B., Colorless Sulfur Bacteria Thioploca from Different Sites in Lake Baikal, Microbiology, 2009, vol. 78, no. 1, pp. 117–124.

    Article  CAS  Google Scholar 

  5. Kojima, H., Koizumi, Y., and Manabu, F., Community Structure of Bacteria Associated with Sheaths of Freshwater and Brackish Thioploca Species, Microb. Ecol., 2006, vol. 52, no. 4, p. 765–773.

    Article  PubMed  Google Scholar 

  6. Prokopenko, M.G., Hammond, D.E., Berelson, W.M., Bernhard, J.M., Stott, L., and Douglas, R., Nitrogen Cycling in the Sediments of Santa Barbara Basin and Eastern Subtropical North Pacific: Nitrogen Isotopes, Diagenesis and Possible Chemosymbiosis between Two Lithotrophs (Thioploca and Anammox)—“Riding on a Glider”, Earth Planet. Sci. Lett., 2006, vol. 242, pp. 186–204.

    Article  CAS  Google Scholar 

  7. Ferdelman, T.G., Lee, C., Pantoja, S., Harder, J., Bebout, B., and Fossing, H., Sulfate Reduction and Methanogenesis in a Thioploca-Dominated Sediment off the Coast of Chile, Geochim., Cosmochim. Acta, 1997, vol. 61, pp. 3065–3079.

    Article  CAS  Google Scholar 

  8. Brinkhoff, T., Muyzer, G., Wirsen, C.O., and Kuever, J., Thiomicrospira chilensis sp. nov., a Mesophilic Obligately Chemolithoautotrophic Sulfur-Oxidizing Bacterium Isolated from a Thioploca Mat, Int. J. Syst. Bacteriol., 1999, vol. 49, pp. 875–879.

    Article  PubMed  Google Scholar 

  9. van de Graaf, A.A., Mulder, A., de Bruijn, P., Jetten, M.S.M., Robertson, L.A., and Kuenen, J.G., Anaerobic Oxidation of Ammonium is a Biologically Mediated Process, Appl. Environ. Microbiol., 1995, vol. 61, pp. 1246–1251.

    PubMed  Google Scholar 

  10. Jetten, M.S., Strous, M., van de Pas-Schoonen, K.T., Schalk, J., van Dongen, U.G., van de Graaf, A.A., Logemann, S., Muyzer, G., van Loosdrecht, M.C., and Kuenen, J.G., The Anaerobic Oxidation of Ammonium, FEMS Microbiol. Rev., 1998, vol. 22, no. 5, pp. 421–437.

    Article  PubMed  CAS  Google Scholar 

  11. Zemskaya, T.I., Namsaraev, B.B., Dul’tseva, N.M., Khanaeva, T.A., Golobokova, L.P., Dubinina, G.A., Dulov, L.E., and Vada, E., Ecophysiological Characteristics of the Mat-Forming Bacterium Thioploca in Bottom Sediments of the Frolikha Bay, Northern Baikal, Microbiology, 2001, vol. 70, no. 3, pp. 335–341.

    Article  CAS  Google Scholar 

  12. Dubinina, G.A. and Grabovich, M.Yu., Isolation, Cultivation, and Characterization of Macromonas bipunctata, Mikrobiologiya, 1984, vol. 53, no. 5, pp. 748–755.

    Google Scholar 

  13. Pfennig, N. and Lippert, R.D., Uber das Vitamin B12 Bedürfnis Schwefelbacterium, Arch. Microbiol., 1966, vol. 55, no. 1, pp. 245–259.

    CAS  Google Scholar 

  14. Ryter, A. and Kellenberger, E., Etude u microscope electronique de plasmas contennant de l’acide desoxyribonucleique, Z. Naturforschung, 1958, vol. 13, no. 9, pp. 597–605.

    Google Scholar 

  15. Reynolds, E.S., The Use of Lead Citrate at High pH as an Electron-Opaque Stain in Electron Microscopy, J. Cell Biol., 1963, vol. 17, no. 1, pp. 208–213.

    Article  PubMed  CAS  Google Scholar 

  16. Reznikov, A.A., Mulikovskaya, E.P., and Sokolov, I.Yu., Metody analiza prirodnykh vod (Methods of Analysis of natural Waters), Moscow: Gosgeoltekhizdat, 1970.

    Google Scholar 

  17. Bradford, M.H., A Rapid and Sensitive Method for Quantitation of Micrograms Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  PubMed  CAS  Google Scholar 

  18. Karavaiko, G.I., Bogdanova, T.I., Tourova, T.P., Kondrat’eva, T.F., Tsaplina, I.A., Egorova, M.A., Krasilnikova, E.N., and Zakharchuk, L.M., Reclassification of “Sulfobacillus thermosulfidooxidans subsp. thermotolerans” Strain K1 as Alicyclobacillus tolerans sp. nov. and Sulfobacillus disulfidooxidans Dufresne et al. 1996 as Alicyclobacillus disulfidooxidans comb. nov., and Emended Description of the Genus Alicyclobacillus, Int. J. Syst. Evol. Microbiol., 2005, vol. 55, pp. 941–947.

    Article  PubMed  CAS  Google Scholar 

  19. Collins, N.D., Analysis of Isoprenoid Quinones, Methods Microbiol., Gottschalk, G., Ed., New York: Academic, 1985, vol. 18, pp. 329–366.

    Google Scholar 

  20. Surkov, A.V., Dubinina, G.A., Lysenko, A.M., Glocker, F.O., and Kuever, J., Dethiosulfovibrio russensis sp. nov., Dethiosulfovibrio marinus sp. nov. and Dethiosulfovibrio acidaminovorans sp. nov., Novel Anaerobic, Thiosulfate- and Sulfur-Reducing Bacteria Isolated from “Thiodendron” Sulfur Mats in Different Saline Environments, Int. J. Syst. Evol. Microbiol., 2001, vol. 51, pp. 327–337.

    PubMed  CAS  Google Scholar 

  21. Marmur, J., A Procedure for the Isolation of Deoxyribonucleic Acid from Microorganisms, J. Mol. Biol., 1961, vol. 3, pp. 208–218.

    Article  CAS  Google Scholar 

  22. Edvards, U., Rogall, T., Bloekker, H., Ende, M.D., and Boeettge, E.C., Isolation and Direct Complete Nucleotide Determination of Entire Genes, Characterization of Gene Coding for 16S Ribosomal RNA, Nucleic Acids Res., 1989, vol. 17, pp. 7843–7853.

    Article  Google Scholar 

  23. Kolganova, T.V., Kuznetsov, B.B., and Turova, T.P., Designing and Testing Oligonucleotide Primers for Amplification and Sequencing of Archaeal 16S rRNA Genes, Microbiology, 2002, vol. 71, no. 2, pp. 243–246.

    Article  CAS  Google Scholar 

  24. Kimura, M., A Simple Method for Estimating Evolutionary Rates of Base Substitutions through Comparative Studies of Nucleotide Sequences, J. Mol. Evol., 1980, vol. 16, no. 2, pp. 111–120.

    Article  PubMed  CAS  Google Scholar 

  25. Tourova, T.P., Kovaleva, O.L., Sorokin, D.Y., and Muyzer, G., Ribulose-1.5-Bisphosphate Carboxylase/Oxygenase Genes as a Functional Marker for Chemolithoautotrophic Halophilic Sulfur-Oxidizing Bacteria in Hypersaline Habitats, Microbiology (UK), 2010, vol. 156, pp. 819–827.

    Article  Google Scholar 

  26. Spiridonova, E.M., Berg, I.A., Kolganova, T.V., Ivanovskii, R.N., Kuznetsov, B.B., and Tourova, T.P., An Oligonucleotide Primer System for Amplification of the Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Genes of Bacteria of Various Taxonomic Groups, Microbiology, 2004, vol. 73, no. 3, pp. 316–325.

    Article  CAS  Google Scholar 

  27. Willems, A., Deley, J., Gillis, M., and Kersters, K., Comamonadaceae, a New Family Encompassing the Acidovorans rRNA Complex, Including Variovorax paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus (Davis, 1969), Int. J. Syst. Bacteriol., 1991, vol. 41, pp. 445–450.

    Article  Google Scholar 

  28. Schmalenberger, A., Hodge, S., Bryant, A., Hawkesford, M.J., Singh, B.K., and Kertesz, M.A., The Role of Variovorax and Other Comamonadaceae in Sulfur Transformations by Microbial Wheat Rhizosphere Communities Exposed to Different Sulfur Fertilization Regimes, Environ. Microbiol., 2008, vol. 10, no. 6, pp. 1486–1500.

    Article  PubMed  CAS  Google Scholar 

  29. Maimaiti, J., Zhang, Y., Yang, J., Cen, Y.-P., Layzell, D.B., Peoples, M., and Dong, Z., Isolation and Characterization of Hydrogen-Oxidizing Bacteria Induced Following Exposure of Soil to Hydrogen Gas and Their Impact on Plant Growth, Environ. Microbiol., 2007, vol. 9, no. 2, pp. 435–444.

    Article  PubMed  CAS  Google Scholar 

  30. Miwa, H., Ahmed, I., Yoon, J., Yokota, A., and Fujiwara, T., Variovorax boronicumulans sp. nov., a Boron-Accumulating Bacterium Isolated from Soil, Int. J. Syst. Evol. Microbiol., 2008, vol. 58, pp. 286–289.

    Article  PubMed  CAS  Google Scholar 

  31. Yoon, J.-H., Kang, S.-J., and Oh, T.-K., Variovorax dokdonensis sp. nov., Isolated from Soil, Int. J. Syst. Evol. Microbiol., 2006, vol. 56, pp. 811–814.

    Article  PubMed  CAS  Google Scholar 

  32. Kim, B.-Y., Weon, H.-Y., Yoo, S.-H., Lee, S.-Y., Kwon, S.-W., Go, S.-J., and Stackebrandt, E.S., Variovorax soli sp.nov., Isolated from Greenhouse Soil, Int. J. Syst. Evol. Microbiol., 2006, vol. 56, pp. 2899–2901.

    Article  PubMed  CAS  Google Scholar 

  33. Im, W.-T., Liu, Q.-M., Lee, K.J., Kim, S.Y., Lee, S.-T., and Yi, T.-H., Variovorax ginsengisoli sp.nov., a Denitrifying Bacterium Isolated from Soil of a Ginseng Field, Int. J. Syst. Evol. Microbiol., 2010, vol. 60, pp. 1565–1569.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Dul’tseva.

Additional information

Original Russian Text © N.M. Dul’tseva, S.M. Chernitsina, T.I. Zemskaya, 2012, published in Mikrobiologiya, 2012, vol. 81, No. 1, pp. 72–83.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dul’tseva, N.M., Chernitsina, S.M. & Zemskaya, T.I. Isolation of bacteria of the genus Variovorax from the Thioploca mats of Lake Baikal. Microbiology 81, 67–78 (2012). https://doi.org/10.1134/S0026261712010067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261712010067

Keywords

Navigation