Skip to main content

Advertisement

Log in

The role of lipids in the morphogenetic processes of mycelial fungi

  • Review
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

This review considers the role of different classes of lipids in fungal morphogenesis and, in particular, their capacity to induce dimorphic growth (the ability of fungi to grow in a mycelial or yeastlike form), which is induced by various factors and results in changes in the biosynthetic and energy processes, as well as in structural and morphological changes. The review includes a brief description of the properties of lipids and their functions in the cell and discusses the specific characteristics of lipid metabolism associated with morphogenesis and dimorphism. The differences in lipid compositions between yeastlike cells and mycelium; the role of the structural and regulatory lipids, fatty acids, and their derivatives in morphological transformation of fungi; and the involvement of lipids in signal transduction and host-pathogen interactions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartnicki-Garcia, S., Symposium on Biochemical Bases of Morphogenesis in Fungi. III. Mould-Yeast Dimorphism of Mucor, Bacteriol. Rev., 1963, vol. 27, pp. 293–304.

    PubMed  CAS  Google Scholar 

  2. Sypherd, P.S., Borgia, P.T., and Pasnokas, J.L., Biochemistry of Dimorphism in the Fungus Mucor, Adv. Microbiol. Physiol., 1978, vol. 18, pp. 67–104.

    Article  CAS  Google Scholar 

  3. Leija, A., Ruiz-Herrera, J., and Mora, J., Effect of L-amino acids on Mucor rouxii dimorphism, J. Bacteriol., 1986, vol. 168, pp. 843–850.

    PubMed  CAS  Google Scholar 

  4. Orlowski, M., Mucor Dimorphism, Microbiol. Rev., 1991, vol. 55, no. 2, pp. 234–258.

    PubMed  CAS  Google Scholar 

  5. Serrano, O., da Silva, T.L., and Roseiro, J.C., Ethanol-Induced Dimorphism and Lipid Composition Changes in Mucor fragilis Ccmi-142, Lett. Appl. Microbiol., 2001, vol. 33, no. 1, pp. 89–93.

    Article  PubMed  CAS  Google Scholar 

  6. da Silva, T.L., Pinheiro, H.M., and Roseiro, J.C., Stress-Induced Morphological and Physiological Changes in γ-Linolenic Acid Production by Mucor fragilis in Batch and Continuous Cultures, Enz. Microbial Technol., 2003, vol. 40, pp. 1321–1327.

    Google Scholar 

  7. Medentsev, A.G., Fain, M.E., Aitkhozhina, N.A., Nikitina, E.T., and Akimenko, V.K., Energy Metabolism in the Fungus Fusarium bulbigenus during Transition From Mycelial to Yeastlike Growth, Biokhimiya, 1992, vol. 57, no. 3, pp. 389–397.

    CAS  Google Scholar 

  8. Funtikova, N.S., Mysyakina, I.S., and Poglazova, M.N., Fatty Acid and Lipid Composition of Mucor lusitanicus in Relation to Its Dimorphic Growth under Extreme Conditions, Mikrobiologiya, 1998, vol. 67, no. 4, pp. 485–491 [Microbiology (Engl. Transl.), vol. 67, no. 4, pp. 401–406].

    Google Scholar 

  9. Funtikova, N.S., Mysyakina, I.S., and Poglazova, M.N., Morphogenesis and Lipid Composition of Mucor Fungi Grown in the Presence of Chloroanilines in Submerged Culture, Mikrobiologiya, 1999, vol. 68, no. 4, pp. 467–472 [Microbiology (Engl. Transl.), vol. 68, no. 4, pp. 406–411].

    Google Scholar 

  10. Mysyakina, I.S. and Funtikova, N.S., Activity of NAD-Dependent Isocitrate Dehydrogenase, Isocitrate Lyase, and Malate Dehydrogenase in Mucor circinelloides var. lusitanicus INMI under Different Modes of Nitrogen Supply, Mikrobiologiya, 2008, vol. 77, no. 4, pp. 453–459 [Microbiology (Engl. Transl.), vol. 77, no. 4, pp. 400–406].

    Google Scholar 

  11. Mysyakina, I.S. and Funtikova, N.S., Metabolic Characteristics and Lipid Composition of Yeastlike Cells and Mycelium of Mucor circinelloides var. lusitanicus INMI Grown at a High Glucose Content in the Medium, Mikrobiologiya, 2008, vol. 77, no. 4, pp. 460–464 [Microbiology (Engl. Transl.), vol. 77, no. 4, pp. 407–411].

    Google Scholar 

  12. Wessels, J.G.H., Cells Wall Synthesis in Apical Hyphal Growth, Rev. Cytol., 1986, vol. 104, pp. 37–79.

    Article  CAS  Google Scholar 

  13. Bartnicki-Garcia, S., Bartnicki, D.D., Gierz, G., Lopez-Franco, R., and Bracker, C.E., Evidence That Spitzenkorper Behavior Determines the Shape of a Fungal Hypha: a Test of Hyphoid Model, Exp. Mycol., 1995, vol. 19, pp. 153–159.

    Article  PubMed  CAS  Google Scholar 

  14. Feofilova, E.P., The Fungal Cell Wall: Modern Concepts of Its Composition and Biological Function, Mikrobiologiya, 2010, vol. 79, no. 6, pp. 723–733 [Microbiology (Engl. Transl.), vol. 79, no. 6, pp. 711–720].

    CAS  Google Scholar 

  15. Steinberg, G., Hyphal Growth: a Tale of Motors, Lipids and Spitzenkörper, Eukaryotic Cell, 2007, vol. 6, no. 3, pp. 351–360.

    Article  PubMed  CAS  Google Scholar 

  16. Geitman, A. and Emons, A.M., The Cytoskeleton in Plant and Fungal Cell Tip Growth, J. Microsc., 2000, vol. 198, pp. 218–245.

    Article  Google Scholar 

  17. Nozawa, Y. and Kasai, R., Mechanism of Thermal Adaptation of Membrane Lipids in Tetrahymena pyriformis NT-1. Possible Evidence for Temperature-Mediated Induction of Palmitoyl-CoA Desaturase, Biochim. Biophys. Acta, 1978, vol. 529, no. 1, pp. 54–66.

    PubMed  CAS  Google Scholar 

  18. Rao, T.V., Trivedi, A., and Prasad, P., Phospholipid Enrichment of Saccharomyces cerevisiae and Its Effect on Polyene Sensitivity, Can. J. Microbiol., 1985a, vol. 31, no. 4, pp. 322–326.

    Article  PubMed  CAS  Google Scholar 

  19. Rao, T.V., Das, S., and Prasad, P., Effect of Phospholipid Enrichment on Nystatin Action: Differences in Antibiotic Sensitivity Between in vivo and in vitro Conditions, Microbios, 1985b, vol. 42, nos. 169–170, pp. 145–153.

    PubMed  CAS  Google Scholar 

  20. Noverr, M.C., Phare, S.M., Toews, G.B., Coffey, M.J., and Huffnagle, G.B., Pathogenic Yeasts Cryptococccus neoformans and Candida albicans Produce Immunomodulatory Prostaglandins, Infect. Immun., 2001, vol. 69, pp. 2957–2963.

    Article  PubMed  CAS  Google Scholar 

  21. Noverr, M.C., Erb-Downward, J.R., and Huffnagle, G.B., Production of Eicosanoids and Other Oxylipins by Pathogenic Eukaryotic Microbes, Clin. Microbiol. Rev., 2003, vol. 16, no. 3, pp. 517–533.

    Article  PubMed  CAS  Google Scholar 

  22. Noverr, M.C. and Huffnagle, G.B., Regulation of Candida albicans Morphogenesis by Fatty Acid Metabolites, Infect. Immun., 2004, vol. 72, no. 11, pp. 6206–6210.

    Article  PubMed  CAS  Google Scholar 

  23. Klose, J., de Sa, M.M., and Kronstad, J.W., Lipid-Induced Filamentous Growth in Ustilago maydis, Mol. Microbiol., 2004, vol. 52, no. 3, pp. 823–835.

    Article  PubMed  CAS  Google Scholar 

  24. Jeennor, S., Laoteng, K., Tanticharoen, M., and Cheevadhanarak, S., Comparative Fatty Acid Profiling of Mucor rouxii under Different Stress Conditions, FEMS Microbiol. Lett., 2006, vol. 259, no. 1, pp. 60–66.

    Article  PubMed  CAS  Google Scholar 

  25. Kobayashi, S.D. and Cutler, J.E., Candida albicans Hyphal Formation and Virulence: Is There a Clearly Defined Role?, Trends Microbiol., 1998, vol. 6, pp. 92–94.

    Article  PubMed  CAS  Google Scholar 

  26. Bahn, Y.S., Staab, J., and Sundstrom, P., Increased High-Affinity Phosphodiesterase PDE2 Gene Expression in Germ Tubes Counteracts CAP1-Dependent Synthesis of Cyclic AMP, Limits Hypha Production and Promotes Virulence of Candida albicans, Mol. Microbiol., 2003, vol. 50, no. 2, pp. 391–409.

    Article  PubMed  CAS  Google Scholar 

  27. Andrews, D.L., Garcia-Pedrajas, M.D., and Gold, S.E., Fungal Dimorphism Regulated Gene Expression in Ustilago maydis: I. Filament Up-Regulated Genes, Mol. Plant Pathol., 2004, vol. 5, pp. 281–293.

    Article  PubMed  CAS  Google Scholar 

  28. Ruiz-Herrera, J., Elorza, M.V., Valentin, E., and Sentandreu, R., Molecular Organization of the Cell Wall of Candida albicans and Its Relation to Pathogenicity, FEMS Yeast Res, 2006, vol. 6, p. 14.

    Article  PubMed  CAS  Google Scholar 

  29. Nadal, M., Garcia-Pedrajas, M.D., and Gold, S.E., Dimorphism in Fungal Plant Pathogens, FEMS Microbiol. Lett., 2008, vol. 284, no. 2, pp. 127–134.

    Article  PubMed  CAS  Google Scholar 

  30. Klein, B.S. and Tebbets, B., Dimorphism and Virulence in Fungi, Curr. Opin. Microbiol., 2007, vol. 10, no. 4, pp. 314–319.

    Article  PubMed  CAS  Google Scholar 

  31. Vanden Bossche, H., Importance and Role of Sterols in Fungal Membranes, in Biochemistry of Cell Walls and Membranes in Fungi, Kuhn, P.J., Trinci, A.P.J., Jung, M.J., Goosey, M.W., and Copping, L.G., Eds., Berlin: Springer, 1990, pp. 135–157.

    Google Scholar 

  32. Mysyakina, I.S. and Funtikova, N.S., The Role of Sterols in Morphogenetic Processes and Dimorphism in Fungi, Mikrobiologiya, 2007, vol. 76, no. 1, pp. 5–18 [Microbiology (Engl. Transl.), vol. 76, no. 1, pp. 1–13].

    Google Scholar 

  33. Martin, S.W. and Konopka, J.B., Lipid Raft Polarization Contributes to Hyphal Growth in Candida albicans, Eukariotic Cell, 2004, vol. 3, no. 3, pp. 675–684.

    Article  CAS  Google Scholar 

  34. Alvares, F.J., Douglas, L.M., and Konopka, J.B., Sterol-Rich Plasma Membrane Domains in Fungi, Eukariotic Cell, 2007, vol. 6, no. 5, pp. 755–763.

    Article  CAS  Google Scholar 

  35. Antonov, V.F., Lipid Pores, Sorosovskii Obrazovatel’nyi Zh., 1998, vol. 10, pp. 10–17.

    Google Scholar 

  36. Cheng, J., Park, T.-S., Fischl, A.S., and Ye, X.S., Cell Cycle Progression and Cell Polarity Require the Sphingolipid Biosynthesis in Aspergillus nidulans, Mol. Cell Biol., 2001, vol. 21, pp. 6198–6209.

    Article  PubMed  CAS  Google Scholar 

  37. Becker, G.W. and Lester, R.L., Biosynthesis of Phosphoinositol-Containing Sphingolipids from Phosphatidylinositol by a Membrane Preparation from Saccharomyces cerevisiae, J. Bacteriol., 1980, vol. 142, no. 3, pp. 747–754.

    PubMed  CAS  Google Scholar 

  38. Lester, R.L. and Dickson, R.C., Sphingolipids with Inositolphosphate-Containing Head Groups, Adv. Lipid Res., 1993, vol. 26, pp. 253–274.

    PubMed  CAS  Google Scholar 

  39. Bogdanov, M., Umeda, M., and Dowhan, W., Phospholipid-Assisted Refolding of an Integral Membrane Protein. Minimum Structural Features for Phosphatidylethanolamine to Act as a Molecular Chaperone, J. Biol. Chem., 1999, vol. 274, pp. 12339–12345.

    Article  PubMed  CAS  Google Scholar 

  40. Ichimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N., Mizushima, N., Tanida, I., Kominami, E., Ohsumi, M., Noda, T., and Ohsumi, Y., A Ubiquitin-Like System Mediates Protein Lipidation, Nature, 2000, vol. 408, no. 6811, pp. 488–492.

    PubMed  CAS  Google Scholar 

  41. Exton, J.H., Signaling through Phosphatidylcholine Breakdown, J. Biol. Chem., 1990, vol. 265, pp. 1–4.

    PubMed  CAS  Google Scholar 

  42. Exton, J.H., Phosphatidylcholine Breakdown and Signal Transduction, Biochim. Biophys. Acta, 1994, vol. 1212, no. 1, pp. 26–42.

    PubMed  CAS  Google Scholar 

  43. Beck, J.B., Mathieu, D., Loudet, C., Buchoux, S., and Dufourc, E.J., Plant Sterols in “Rafts”: a Better Way to Regulate Membrane Thermal Shocks, The FASEB J., 2007, vol. 21, pp. 1714–1723.

    Article  CAS  Google Scholar 

  44. Mishra, P. and Kaur, S., Lipids as Modulators of Ethanol Tolerance in Yeast, Appl. Microbiol. Biotechnol., 1991, vol. 34, pp. 697–702.

    Article  CAS  Google Scholar 

  45. Struchkov, V.A. and Strazhevskaya, N.B., DNA-Bound Lipids: Composition and Possible Functions, Biokhimiya, 1993, vol. 58, no. 8, pp. 1154–1175.

    CAS  Google Scholar 

  46. Strazhevskaya, N.B., Mulyukin, A.L., Shmyrina, A.S., Kraus, A., Lorents, V., Zhdanov, R.I., and El’-Registan, G.I., Characteristics of Pseudomonas aurantiaca DNA Supramolecular Complexes at Various Developmental Stages, Mikrobiologiya, 2009, vol. 78, no. 1, pp. 59–67 [Microbiology (Engl. Transl.), vol. 78, no. 1, pp. 48–55].

    Google Scholar 

  47. Albi, E. and Viola Magni, M.P., The Role of Intracellular Lipids, Biol. Cell., 2004, vol. 96, pp. 657–667.

    Article  PubMed  CAS  Google Scholar 

  48. Zhdanov, R.I., Shmyrina, A.S., Zarubina, T.V., Mulyukin, A.L., El-Registan, G.I., Haupt, N., Kraus, A., and Lorenz, W., Nature of DNA-Bound Fatty Acids in Pseudomonas aurantiaca, FEMS Microbiol. Letts., 2006, vol. 265, no. 2, pp. 151–158.

    Article  CAS  Google Scholar 

  49. Chopra, A. and Khuller, G.K., Lipids of Pathogenic Fungi, Prog. Lipid Res., 1983, vol. 22, pp. 189–220.

    Article  PubMed  CAS  Google Scholar 

  50. Sorger, D. and Daum, G., Synthesis of Triacylglycerols by the Acyl-Coenzyme A:Diacylglycerol Acyltransferase Dga1p in Lipid Particles of the Yeast Saccharomyces cerevisiae, J. Bacteriol., 2002, vol. 184, no. 2, pp. 519–524.

    Article  PubMed  CAS  Google Scholar 

  51. Daum, G., Wagner, A., Czabany, T., Grillitsch, K., and Athenstaedt, K., Lipid Storage and Mobilization Pathways in Yeast, Novartis Found. Symp., 2007, vol. 286, pp. 142–151.

    Article  PubMed  CAS  Google Scholar 

  52. Daum, G., Wagner, A., Czabany, T., and Athenstaedt, K., Dynamics of Neutral Lipid Storage and Mobilization in Yeast, Biochimie, 2007, vol. 89, no. 2, pp. 243–248.

    Article  PubMed  CAS  Google Scholar 

  53. Davidova, E.G., Belov, A.P., Balashova, L.D., and Zaitsev, S.A., Lipid Composition of Subcellular Structures of the Yeasts Grown under Intense Lipogenesis, Mikrobiologiya, 1986, vol. 55, no. 4, pp. 576–581.

    Google Scholar 

  54. Zinchenko, G.A., Belov, A.P., and Davidova, E.G., Intracellular Distribution and Composition of Yeast Triacylglycerols, Mikrobiologiya, 1989, vol. 58, no. 6, pp. 934–937.

    CAS  Google Scholar 

  55. Iwanyshyn, W.M., Han, G.-S., and Carman, G.M., Regulation of Phospholipid Synthesis in Saccharomyces cerevisiae by Zinc, J. Biol. Chem., 2004, vol. 279, pp. 21976–21983.

    Article  PubMed  CAS  Google Scholar 

  56. Carman, G.M. and Kersting, M.C., Phospholipid Synthesis in Yeast: Regulation by Phosphorylation, Biochem. Cell Biol., 2004, vol. 82, no. 1, pp. 62–70.

    Article  PubMed  CAS  Google Scholar 

  57. Jiranek, V., Graves, J.A., and Henry, S.A., Pleiotropic Effects of the opi1 Regulatory Mutation of Yeast: Its Effects on Growth and on Phospholipid and Inositol Metabolism, Microbiology (UK), 1998, vol. 144, no. 10, pp. 2739–2748.

    Article  CAS  Google Scholar 

  58. Choi, M.G., Parks, T.S., and Carman, G.M., Phosphorylation of Saccharomyces cerevisiae CTP Synthetase at Ser424 by Protein Kinases A and C Regulates Phosphatidylcholine Synthesis by the CDP-Choline Pathway, J. Biol. Chem., 2003, vol. 278, no. 26, pp. 23610–23616.

    Article  PubMed  CAS  Google Scholar 

  59. Carman, G.M. and Han, G.S., Regulation of Phospholipid Synthesis in Saccharomyces cerevisiae by Zinc Depletion, Biochim. Biophys. Acta, 2007, vol. 1771, no. 3, pp. 322–330.

    PubMed  CAS  Google Scholar 

  60. Daum, G., Lees, N.D., Bard, M., and Dickson, R., Biochemistry, Cell Biology and Molecular Biology of Lipids of Saccharomyces cerevisiae, Yeast, 1998, vol. 14, pp. 1471–1510.

    Article  PubMed  CAS  Google Scholar 

  61. Zinser, E., Sperka-Gottlieb, C.D.M., Fasch, E.-V., Kohlwein, S.D., Paltauf, F., and Daum, G., Phospholipid Synthesis and Lipid Composition of Subcellular Membranes in the Unicellular Eukaryote Saccharomyces cerevisiae, J. Bacteriol., 1991, vol. 173, no. 6, pp. 2026–2034.

    PubMed  CAS  Google Scholar 

  62. Munnik, T., Irvine, R.F., and Musgrave, A., Phospholipid Signaling in Plants, Biochim. Biophys. Acta, 1998, vol. 1389, pp. 222–272.

    PubMed  CAS  Google Scholar 

  63. Dow, J.M., Carreon, R.R., and Villa, V.D., Role of Membranes of Mycelial Mucor rouxii in Synthesis and Secretion of Cell Wall Matrix Polymers, J. Bacteriol., 1981, vol. 145, no. 1, pp. 272–279.

    PubMed  CAS  Google Scholar 

  64. Bartnicki-Garcia, S., Role of Chitosomes in the Synthesis of Fungal Cell Walls, in Microbiology-1981, Schlessinger, D., Ed., Washington, DC: Amer. Soc. Microbiol., 1981, pp. 238–241.

    Google Scholar 

  65. Ghormade, V.S., Lachke, S.A., and Despande, M.V., Dimorphism in Benjaminiella poitrasii: Involvement of Intracellular Endochitinase and N-Acetylglucosaminidase Activities in the Yeast-Mycelium Transition, Folia Microbiol., 2000, vol. 45, no. 3, pp. 231–238.

    Article  CAS  Google Scholar 

  66. Humphreys, A.M., Phospholipid Requirement of Microsomal Chitinase from Mucor mucedo, Curr. Microbiol., 1984a, vol. 11, pp. 187–190.

    Article  CAS  Google Scholar 

  67. Humphreys, A.M. and Gooday, D.W., Properties of Chitinase Activity from Mucor mucedo: Evidence for Membrane-Bound Zymogenic Form, J. Gen. Microbiol., 1984b, vol. 130, pp. 1359–1366.

    CAS  Google Scholar 

  68. Gordon, P.A., Stewart, P.R., and Clark-Walker, G.D., Fatty Acid and Sterol Composition of Mucor genevensis in Relation to Dimorphism and Anaerobic Growth, J. Bacteriol., 1971, vol. 107, no. 1, pp. 114–120.

    PubMed  CAS  Google Scholar 

  69. Safe, S. and Caldwell, J., The Effect of Growth Environment on the Chloroform-Methanol and Alkali-Extractable Cell Wall and Cytoplasmic Lipid Levels of Mucor rouxii, Can. J. Microbiol., 1975, vol. 21, pp. 79–84.

    Article  PubMed  CAS  Google Scholar 

  70. Nomura, S., Horiuchi, T., Omura, S., and Hata, T., The Action Mechanism of Cerulenin. I. Effect of Cerulenin on Sterol and Fatty Acid Biosynthesis in Yeast, J. Biochem., 1972, vol. 71, no. 5, pp. 783–796.

    PubMed  CAS  Google Scholar 

  71. Greenspan, M.D. and Mackow, R.C., The Effect of Cerulenin on Sterol Biosynthesis in Saccharomyces cerevisiae, Lipids, 1977, vol. 12, no. 9, pp. 729–740.

    Article  PubMed  CAS  Google Scholar 

  72. Ohno, T., Awaya, J., and Omura, S., Inhibition of Sporulation by Cerulenin and Its Reversion by Exogenous Fatty Acids in Saccharomyces cerevisiae, Antimicrob. Agents Chemother., 1976, vol. 9, no. 1, pp. 42–48.

    PubMed  CAS  Google Scholar 

  73. Brambl, R., Wenzler, H., and Josephson, M., Mitochondrial Biogenesis During Fungal Spore Germination: Effects of the Antilipogenic Antibiotic Cerulenin Upon Botryodiplodia Spores, J. Bacteriol., 1978, vol. 135, no. 2, pp. 311–317.

    PubMed  CAS  Google Scholar 

  74. Daum, G., Gamerith, G., and Paltauf, F., The Effect of Cerulenin and Exogenous Fatty Acids on Triacylglycerol Accumulation in an Inositol-Deficient Yeast, Saccharomyces carlsbergensis, Biochim. Biophys. Acta, 1979, vol. 573, no. 2, pp. 413–415.

    CAS  Google Scholar 

  75. Ito, E., Cihlar, R.L., and Inderlied, C.D., Lipid Synthesis during Morphogenesis in Mucor racemosus, J. Bacteriol., 1982, vol. 152, pp. 880–887.

    PubMed  CAS  Google Scholar 

  76. Sanadi, S., Pandey, R., and Khuller, G.K., Reversal of Cerulenin-Induced Inhibition of Phospholipids and Sterol Synthesis by Exogenous Fatty Acids/Sterols in Epidermophyton floccosum, Biochim. Biophys. Acta, 1987, vol. 921, no. 2, pp. 341–346.

    PubMed  CAS  Google Scholar 

  77. Jensen, E.C., Ogg, C., and Nickerson, K.W., Lipoxygenase Inhibitors Shift the Yeast/Mycelium Dimorphism in Ceratocystis ulmi, Appl. Environ. Microbiol., 1992, vol. 58, no. 8, pp. 2505–2508.

    PubMed  CAS  Google Scholar 

  78. Gomez-Müoz, A., Modulation of Cell Signaling by Ceramides, Biochim. Biophys. Acta, 1998, vol. 1391, pp. 92–109.

    Google Scholar 

  79. Shears, S.B., The Versatility of Inositol Phosphates as Cellular Signals, Biochim. Biophys. Acta, 1998, vol. 1386, pp. 49–67.

    Google Scholar 

  80. Tarchevskii, I.A. and Chernov, V.M., Molecular Aspects of Phytoimmunity, Mikol. Fitopatol., 2000, vol. 34, no. 3, pp. 1–10.

    CAS  Google Scholar 

  81. Grechkin, A.N. and Tarchevskii, I.A., The Cellular Signaling Systems and the Genome, Bioorg. Khim., 2000, vol. 26, no. 10, pp. 779–781 [Russ. J. Bioorg. Chem., (Engl. Transl.), vol. 26, no 10, pp. 702–704].

    PubMed  CAS  Google Scholar 

  82. Moolenaar, W.H., Lisophosphatidic Acid, a Multifunctional Phospholipid Messenger, J. Biol. Chem., 1995, vol. 270, pp. 12949–12952.

    PubMed  CAS  Google Scholar 

  83. Rudge, S.A., Morris, A.J., and Engebrecht, J., Relocalisation of Phospholipase D Activity Mediates Membrane Formation during Meiosis, J. Cell Biol., 1998, vol. 140, no. 1, pp. 81–90.

    Article  PubMed  CAS  Google Scholar 

  84. Xie, Z., Fang, M., Rivas, M.P., Faulkner, A.J., Sternweis, P.C., Engebrecht, J.A., and Bancaitis, V.A., Phospholipase D Activity Is Required for Suppression of Yeast Phosphatidilinositol Transfer Protein Defects, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 12346–12351.

    Article  PubMed  CAS  Google Scholar 

  85. Lloyd, G.I., Morris, E.O., and Smith, J.E., A Study of the Esterases and Their Function in Candida lipolytica, Aspergillus niger and a Yeast-Like Fungus, J. Gen. Microbiol., 1970, vol. 63, no. 2, pp. 141–150.

    PubMed  CAS  Google Scholar 

  86. Gadd, G.M, Signal Transduction in Fungi, in The Growing Fungus, Gow, N.A.R. and Gadd, G.M., Eds., London: Chapman & Hall, 1995, pp. 183–210.

    Google Scholar 

  87. Fu, Y., Ibrahim, A.S., Fonzi, W., Zhou, X., Ramos, C.F., and Ghannoum, M.A., Cloning and Characterization of a Gene (LIP1) Which Encodes a Lipase from the Pathogenic Yeast Candida albicans, Microbiology (UK), 1997, vol. 143, no. 2, pp. 331–340.

    Article  CAS  Google Scholar 

  88. Kumar, C.P., Menon, T., Sundararajan, T., Nalini, S., Thirunarayan, M.A., Rajasekaran, S., and Venkatadesikalu, M., Esterase Activity of Candida Species Isolated from Immunocompromised Hosts, Rev. Iberoam Mycol, 2006, vol. 23, no. 2, pp. 101–103.

    Article  Google Scholar 

  89. McLain, N. and Dolan, J.W., Phospholipase D Activity Is Required for Dimorphic Transition in Candida albicans, Microbiology (UK), 1997, vol. 143, pp. 3521–3526.

    Article  CAS  Google Scholar 

  90. Ella, K.M., Dolan, J.W., and Meier, K.E., Characterization of a Regulated Form of Phospholipase D in the Yeast Saccharomyces cerevisiae, Biochem. J., 1995, vol. 307, pp. 799–805.

    PubMed  CAS  Google Scholar 

  91. Ella, K.M., Dolan, J.W., Qi, C., and Meier, K.E., Characterization of Saccharomyces cerevisiae Deficient in Expression of Phospholipase D, Biochem. J., 1996, vol. 314, pp. 15–19.

    PubMed  CAS  Google Scholar 

  92. Sciorra, V.A., Rudge, S.A., Jiyao, Wang., and McLaughlin, S., Dual Role for Phosphoinositides in Regulation of Yeast and Mammalian Phospholipase D Enzymes, J. Cell Biol., 2002, vol. 159, no. 6, p. 1039.

    Article  PubMed  CAS  Google Scholar 

  93. Amsterdam, A., Dantes, A., and Liscovitch, M., Role of Phospholipase D and Phosphatidic Acid in Mediating Gonadotropin-Releasing Hormone-Induced Inhibition of Preantral Granulose Cell Differentiation, Endocrinology, 1994, vol. 135, pp. 1205–1211.

    Article  PubMed  CAS  Google Scholar 

  94. Moritz, A., De Graan, P.N.E., Gipsen, W.H., and Wirtz, K.W.A., Phosphatidic Acid Is a Specific Activator of Phosphatidilinositol-4-Phosphate Kinase, J. Biol. Chem., 1992, vol. 267, pp. 7207–7210.

    PubMed  CAS  Google Scholar 

  95. Ha, K.-S. and Exton, J.H., Activation of Actin Polymerization by Phosphatidic Acid Derived from Phosphatidylcholine in IIC9 Fibroblasts, J. Cell Biol., 1993, vol. 123, pp. 1789–1796.

    Article  PubMed  CAS  Google Scholar 

  96. Zhang, Q., Griffith, J.M., and Grant, B.R., Role of Phosphatidic Acid During Differentiation of Phytophthora palmivora Zoospores, J. Gen. Microbiol., 1992, vol. 138, pp. 451–459.

    CAS  Google Scholar 

  97. Jenkins, G.H., Fisette, P.L., and Anderson, R.A., Type I Phosphatidilinositol-4-Phosphate 5-Kinase Isoforms Are Specifically Stimulated by Phosphatidic Acid, J. Biol. Chem., 1994, vol. 269, pp. 11547–11554.

    PubMed  CAS  Google Scholar 

  98. Morlock, K.R., McLaughlin, J.J., Lin, Y.-P., and Carman, G.M., Phosphatidate Phosphatase from Saccharomyces cerevisiae: Isolation of 45- and 104-kDa Forms of the Enzyme That Are Differentially Regulated by Inositol, J. Biol. Chem., 1991, vol. 266, pp. 3586–3593.

    PubMed  CAS  Google Scholar 

  99. Wu, W.-I., Lin, Y.-P., Wang, E., Merrill, A.H., and Carman, G.M., Regulation of Phosphatidate Phosphatase Activity from the Yeast Saccharomyces cerevisiae by Sphingoid Bases, J. Biol. Chem., 1993, vol. 268, pp. 13830–13837.

    PubMed  CAS  Google Scholar 

  100. Hube, B., Hess, D., Baker, C.A., Schller, M., Schafer, W., and Dolan, J.W., The Role and Relevance of Phospholipase D1 during Growth and Dimorphism of Candida albicans, Microbiology (UK), 2001, vol. 47, no. 4, pp. 879–889.

    Google Scholar 

  101. Luo, B., Prescott, S.M., and Topham, M.K., Association of Diacylglycerol Kinase Zeta with Protein Kinase Cα: Spatial Regulation of Diacylglycerol Signaling, J. Cell Biol., 2003, vol. 160, no. 6, p. 929.

    Article  PubMed  CAS  Google Scholar 

  102. Gaits, F. and Fourcade, O., Le Balle, F., Gueguen, G., Gaige, B., Gassama-Diagne, A., Fauvel, J., Salles, J.P., Mauco, G., Simon, M.F., and Chap, H., Lysophosphatidic Acid as a Phospholipid Mediator: Pathways of Synthesis, FEBS Lett., 1997, vol. 410, no. 1, pp. 54–58.

    Article  PubMed  CAS  Google Scholar 

  103. Kearns, B.G., McGee, T.P., Meyinger, P., Gedvilaite, A., Phillips, S.E., Kagiwada, S., and Bankatis, V.A., Essential Role for Diacylglycerol in Protein Transport from the Yeast Golgi Complex, Nature, 1997, vol. 387, no. 6628, pp. 101–105.

    Article  PubMed  CAS  Google Scholar 

  104. Macko, V., Inhibitors and Stimulants of Spore Germination and Infection Structure Formation in Fungi, in The Fungal Spore. Morphogenetic Controls, Turian, G. and Holh, H.R., Eds., New York: Academic, 1981, pp. 565–584.

    Google Scholar 

  105. Podila, G.K., Rogers, L.M., and Kolattukudy, P.E., Chemical Signals from Avocado Surface Wax Trigger Germination and Appressorium Formation in Colletotrichum gloeosporioides, Plant Physiol., 1993, vol. 103, pp. 267–272.

    PubMed  CAS  Google Scholar 

  106. Kolattukudy, P.E., Rogers, L.M., Li, D., Hwang, C.S., and Flaishman, M.A., Surface Signaling in Pathogenesis, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 4080–4087.

    Article  PubMed  CAS  Google Scholar 

  107. Nukina, M., Sassa, T., Ikeda, M., Takahasi, K., and Toyota, S., Linolenic Acid Enhances Perithecial Production in Neurospora crassa, Agric. Biol. Chem., 1981, vol. 45, pp. 2371–2373.

    CAS  Google Scholar 

  108. Goodrich-Tanrikulu, M., Howe, K., Staford, A., and Nelson, M.A., Changes in Fatty Acid Composition of Neurospora crassa Accompany Sexual Development and Ascospore Germination, Microbiology (UK), 1998, vol. 144, pp. 1713–1720.

    Article  CAS  Google Scholar 

  109. Rai, J.N., Tewari, J.P., and Sinha, A.K., Effect of Environmental Conditions on Sclerotia and Cleistothecial Production in Aspergillus, Mycopathol. Mycol. Appl, 1967, vol. 31, pp. 209–224.

    Article  PubMed  CAS  Google Scholar 

  110. Calvo, A.M., Hinze, L.L., Gardner, H.W., and Keller, N.P., Sporogenic Effect of Polyunsaturated Fatty Acids on Development of Aspergillus spp., Appl. Environ. Microbiol., 1999, vol. 65, pp. 3668–3673.

    PubMed  CAS  Google Scholar 

  111. Wilson, R.A., Calvo, A.M., Chang, P.K., and Keller, N.P., Characterization of the Aspergillus parasiticus Δ12-Desaturase Gene: a Role for Lipid Metabolism in the Aspergillus-Seed Interaction, Microbiology (UK), 2004, vol. 150, no. 9, pp. 2881–2888.

    Article  CAS  Google Scholar 

  112. Katayama, M. and Marumo, S., R(2)-Glycerol Monolinoleate, a Minor Sporogenic Substance of Sclerotinia fructicola, Agric. Biol. Chem., 1978, vol. 42, pp. 1431–1433.

    CAS  Google Scholar 

  113. Champe, S.P., Rao, P., and Chang, A., An Endogenous Inducer of Sexual Development in Aspergillus nidulans, J. Gen. Microbiol., 1987, vol. 133, pp. 1383–1387.

    PubMed  CAS  Google Scholar 

  114. Mazur, P., Nakanishi, K., El-Zayat, A.A.E., and Champe, S.P., Structure and Synthesis of Sporogenic Psi Factors from Aspergillus nidulans, J. Chem. Soc., Chem. Commun., 1991, vol. 20, pp. 1486–1487.

    Article  Google Scholar 

  115. Calvo, A.M., Gardner, H.W., and Keller, N.P., Genetic Connection between Fatty Acid Metabolism and Sporulation in Aspergillus nidulans, J. Biol. Chem., 2001, vol. 276, pp. 25766–25774.

    Article  PubMed  CAS  Google Scholar 

  116. Kerwin, J.L, Fatty Acid and Fungal Development: Structure-Activity Relationships, in Ecology and Metabolism of Plant Lipids. Amer. Chem. Soc. Symposium no. 325, Fuller, L. and Nes, W.D., Eds., 1987, ch. 20, pp. 329–342.

  117. Stasiuk, M. and Kozubek, A., Biological Activity of Phenolic Lipids, Cell. Mol. Life Sci., 2010, vol. 67, pp. 841–860.

    Article  PubMed  CAS  Google Scholar 

  118. Konanykhina, I.A., Shanenko, E.F., Loiko, N.G., Nikolaev, Yu.A., and El’-Registan, G.I., Regulatory Effect of Microbial Alkyloxybenzenes of Different Structure on the Stress Response of Yeast, Prikl. Biokhim. Mikrobiol., 2008, vol. 44, no. 5 [Appl. Biochem. Microbiol. (Engl. Transl.), vol. 44, no. 5, pp. 518–522].

  119. Feresin, G.E., Tapia, A., Sortino, M., Zacchino, S., de Arias, A.R., Inchausti, A., Yaluff, G., Rodriguez, J., Theoduloz, C., and Schmeda-Hirschmann, G., Bioactive Alkyl Phenols and Embelin from Oxalis erythtrorhiza, J. Ethnopharmacol., 2003, vol. 88, pp. 241–247.

    Article  PubMed  CAS  Google Scholar 

  120. Murata, M., Irie, J., and Homma, S., Inhibition of Lipid Synthesis of Bacteria, Yeast and Animal Cells by Anacardic Acids, Glycerol-3-Phosphate Dehydrogenase Inhibitors from Ginkgo, Lebensm. Wiss. Technol., 1997, vol. 30, pp. 458–463.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Mysyakina.

Additional information

Original Russian Text © I.S. Mysyakina, E.P. Feofilova, 2011, published in Mikrobiologiya, 2011, Vol. 80, No. 3, pp. 291–300.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mysyakina, I.S., Feofilova, E.P. The role of lipids in the morphogenetic processes of mycelial fungi. Microbiology 80, 297–306 (2011). https://doi.org/10.1134/S0026261711030155

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261711030155

Keywords

Navigation