Skip to main content
Log in

Kinetic study of partially purified cellulase enzyme produced by Trichoderma viride FCBP-142 and its hyperactive mutants

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Cellulases are the enzymes that cleave β-1,4 linkages of cellulose, and carbohydrate that is main part of plants’ cell walls. Presently, cellulase isolation and partial purification was executed through ammonium sulfate precipitation. The isolated protein of parental and derived mutants conferred molecular weights of 30, 45 and 55 kDa. The optimum temperature for maximal cellulase activity was 50°C with E a for substrate hydrolysis of 77.73, 83.97 and 83.14 kJ mol−1 and temperature quotient of 1.0020, 1.0022 and 1.0022 by Trichoderma viride FCBP-142, Tv-UV-5.6 and Tv-Ch-4.3, respectively. The enzyme was stable at 50°C for about 60 min but rapid denaturation occurred above 55°C. The enzyme showed optimum activity at pH 4.0 and involved two types of acidic and basic limbs with pKa1 and pKa2. The pKa1 of active site presented a significant shift from 2.55 to 2.9 and 3.1 by Tv-UV-5.6 and Tv-Ch-4.3, respectively in comparison to parental strain. Likewise, pKa2 moved from 6.05 to 6.5 and 6.4. Enzyme kinetics displayed Michaelis-Menten constant K m 0.6, 0.5 and 0.28 mg mL−1 and V max value of 8.33, 10 and 9.09 Units mL−1 for parental, Tv-UV-5.6 and Tv-Ch-4.3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Estrerbauer, H., Steiner, W., Labudova, I., Hermann, A., and Hayn, M., Production of Trichoderma Cellulase in Laboratory and Pilot-Scale, Biores. Technol., 1991, vol. 36, pp. 51–65.

    Article  Google Scholar 

  2. Sun, Y. and Cheng, J., Hydrolysis of Lignocellulosic Material from Ethanol Production: a Review, Biores. Technol., 2002, vol. 83, pp. 1–11.

    Article  CAS  Google Scholar 

  3. Beauchemin, K.A., Colombatto, D., Morgavi, D.P., and Yang, W.Z., Use of Exogenous Fibrolytic Enzymes to Improve Animal Feed Utilization by Ruminants, J. Ani. Sci., 2003, vol. 81, pp. 37–47.

    Google Scholar 

  4. Adsul, M.G., Bastawde, K.B., Varma, A.J., and Gokhale, D.V., Strain Improvement of Penicillium janthinellum NCIM 1171 for Increased Cellulase Production, Biores. Technol., 2007, vol. 98, pp. 1467–1473.

    Article  CAS  Google Scholar 

  5. Pandey, A., Nigam, P., Soccol, C.R., Soccol, V.T., Singh, D., and Mohan, R., Advances in Microbial Amylases (Review), Biotechnol. App. Biochem., 2000, vol. 31, pp. 135–152.

    Article  CAS  Google Scholar 

  6. Ozsoy, N. and Berkkan, H., Production and Characterization of α-Galactosidase from Aspergillus flavipes, Cell Biochem. Fun, 2003, vol. 21, pp. 387–389.

    Article  CAS  Google Scholar 

  7. Becerra, M., Cerdan, E., and Siso, M.I.G., Dealing with Different Methods for Kluyveromyces lactis for β-Galactosidase Purification, Biol. Pro. Online, 1998, vol. L1, pp. 48–58.

    Article  Google Scholar 

  8. Nagy, Z., Kiss, T., Szentirmai, A., and Biro, S., β-Galactosidase from Penicillium chrysogenum. Production, Purification and Characterization of Enzyme, Pro. Exp. Pur., 2001, vol. 21, pp. 24–29.

    Article  CAS  Google Scholar 

  9. Immanuel, G., Bhagavath, C.M.A., Raj, P.I., Esakkiraj, P., and Palavesam, A., Production and Partial Purification of Cellulase by Aspergillus niger and A. fumigatus Fermented in Coir Waste and Sawdust, Int. J. Microbiol., 2007, vol. 3, pp. 1–7.

    Google Scholar 

  10. Rashid, M.H., and Siddiqui, K.S., Thermodynamic and Kinetic Study of Stability of the Native and Chemically Modified, β-Glucosidase from Aspergillus niger, Pro. Biochem, 1998, vol. 33, pp. 109–115.

    Article  CAS  Google Scholar 

  11. Lu, M., Li, D., and Zhang, C., Purification and Properties of an Endo-Cellulase from the Thermophilic Fungus Chaetomium thermophile, Wei Sheng Wu Xue Bao, 2002, vol. 42, pp. 471–477.

    PubMed  CAS  Google Scholar 

  12. Declerck, N., Machius, M., Joyet, P., Wiegand, G., Huber, R., and Gaillardin, C., Hyperthermostabilization of Bacillus licheniformis Alpha-Amylase and Modulation of its Stability over a 50 Degrees C Temperature Range, Pro. Eng., 2003, vol 16, pp. 287–293.

    Article  CAS  Google Scholar 

  13. Onsori, H., Zamani, M.R., Motallebi, M., and Zarghami, N., Identification of Over Producer Strain of Endo-β-1,4-Glucanase in Aspergillus Species: Characterization of Crude Carboxymethyl Cellulose, Afr. J. Biotechnol., 2005, vol. 4, pp. 26–30.

    CAS  Google Scholar 

  14. Celestino, K.R.S., Cunha, R.B., and Felix, C.R., Characterization of a β-Glucanase Produced by Rhizopus microsporus var. microsporus, and Its Potential for Application in the Brewing Industry, BMC Biochem, 2006, vol. 7, p. 23.

    Article  PubMed  Google Scholar 

  15. Saxena, K.R., Dutt, K., Agarwal, L., and Nayyar, P., A Highly and Thermostable Alkaline Amylase from a Bacillus Species PN5, Biores. Technol., 2007, vol. 98, pp. 260–265.

    Article  CAS  Google Scholar 

  16. McCleary, B.V. and Harrington, J., Purification of β-Glucosidase form Aspergillus niger, in Meth. Enzymol., Wood, W.A. and Kellog, S.T., Eds, San Diego: Academic, 1998, vol. 160, pp. 575–583.

    Google Scholar 

  17. Najafi, M.F., Deobagkar, D., and Deobagkar, D., Purification and Characterization of an Extra Cellular Alpha Amylase from Bacillus subtilis AX20, Pro. Exp. Pur., 2005, vol. 41, pp. 349–354.

    Article  CAS  Google Scholar 

  18. Bradford, M.M., A Rapid and Sensitive Method for the Quantification of Microgram Quantities of Protein Utilizing the Principle of Protein dye Binding, Ann. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  Google Scholar 

  19. Awan, M.S., Genetic Manipulation of Aspergillus niger for Hyper Production of α- and β-Galactosidases, Ph.D. thesis, Dept. of Microbiology, Quaid-e-Azam University, Islamabad, Pakistan, 2006.

    Google Scholar 

  20. Dixon, M. and Webb, E.C., Enzyme Kinetics, in Enzymes, New York: Academic, 1979, vol. 3, pp. 47–206.

    Google Scholar 

  21. Siddiqui, K.S., Saqib, A., Rashid, M.H., and Rajoka, M.I., Carboxyl Group Modification Significantly Altered the Kinetic Properties of Purified Carboxymethylcellulase from Aspergillus niger, Enz. Microb. Technol., 2000, vol. 27, pp. 467–474.

    Article  CAS  Google Scholar 

  22. Coral, G., Arikan, B., and Nisa, M., Unaldi, and Guvenmez, H., Some Properties of Crude Carboxymethyl Cellulase of Aspergillus niger Z10 Wild Type Strain, Tur. J. Biol., 2002, vol. 26, pp. 209–213.

    CAS  Google Scholar 

  23. Saul, D.J., Williams, L.C., Grayling, R.A., Chamley, L.W., Love, D.R., and Berquist, P.L., celB, a Gene Coding for a Bifunctional Cellulase from the Extreme Thermophile “Caldocellum sacch arolyticum”, App. Env. Microbiol., 1990, vol. 56, pp. 3117–3124.

    CAS  Google Scholar 

  24. Akiba, S., Kimura, Y., and Kumagai, H., Purification and Characterization of Protease Resistant Cellulase from Aspergillus niger, J. Fer. Bioeng., 1995, vol. 79, pp. 125–130.

    Article  CAS  Google Scholar 

  25. Chen, J. and Stites, W.E., Higher-Order Packing Interactions in Triple and Quadruple Mutants of Staphylococcal Nuclease, Biochem., 2001, vol. 40, pp. 14012–14019.

    Article  CAS  Google Scholar 

  26. Shafique, S., Bajwa, R., and Shafique, S., Mutagenesis and Genetic Characterization of Amylolytic Aspergillus niger, Nat. Prod. Res., 2009 (accepted).

  27. Converti, A. and Dominguez, J.M., Influence of Temperature and pH on Xylitol Production from Xylose by Debarryomyces hansenii, Biotechnol. Bioeng., 2001, vol. 75, pp. 39–45.

    Article  PubMed  CAS  Google Scholar 

  28. Rajoka, M.I. and Khan, S., Hyper-Production of a Thermotolerant β-Xylosidase by a Deoxy-D-Glucose and Cycloheximide Resistant Mutant Derivative of Kluyveromyces marxianus PPY 125, Elec. J. Biotechnol., 2005, vol. 8, pp. 177–184.

    Article  CAS  Google Scholar 

  29. Angayarkannil, J., Palaniswamy, M., Pradeep, B.V., and Swaminathan, K., Biochemical Substitution of Fungal Xylanases for Prebleaching of Hardwood Kraft Pulp, Afr. J. Biotechnol., 2006, vol. 5, pp. 921–929.

    Google Scholar 

  30. Gao, J., Weng, H., Zhu, D., Yuan, M., Guan, F., and Xi, Y., Production and Characterization of Cellulolytic Enzymes from the Thermoacidophilic Fungal Aspergillus terreus M11 under Solid State Cultivation of Corn Stover, Biores. Technol., 2008, vol. 99, pp. 7623–7629.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shazia Shafique.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shafique, S., Shafique, S. Kinetic study of partially purified cellulase enzyme produced by Trichoderma viride FCBP-142 and its hyperactive mutants. Microbiology 80, 363–371 (2011). https://doi.org/10.1134/S0026261711020135

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261711020135

Keywords

Navigation